Suppr超能文献

调整势能函数以适应主客体结合数据。

Tuning Potential Functions to Host-Guest Binding Data.

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9255 Pharmacy Lane, La Jolla, California 92093, United States.

Boothroyd Scientific Consulting Ltd., London WC2H 9JQ, U.K.

出版信息

J Chem Theory Comput. 2024 Jan 9;20(1):239-252. doi: 10.1021/acs.jctc.3c01050. Epub 2023 Dec 26.

Abstract

Software to more rapidly and accurately predict protein-ligand binding affinities is of high interest for early-stage drug discovery, and physics-based methods are among the most widely used technologies for this purpose. The accuracy of these methods depends critically on the accuracy of the potential functions that they use. Potential functions are typically trained against a combination of quantum chemical and experimental data. However, although binding affinities are among the most important quantities to predict, experimental binding affinities have not to date been integrated into the experimental data set used to train potential functions. In recent years, the use of host-guest complexes as simple and tractable models of binding thermodynamics has gained popularity due to their small size and simplicity, relative to protein-ligand systems. Host-guest complexes can also avoid ambiguities that arise in protein-ligand systems such as uncertain protonation states. Thus, experimental host-guest binding data are an appealing additional data type to integrate into the experimental data set used to optimize potential functions. Here, we report the extension of the Open Force Field Evaluator framework to enable the systematic calculation of host-guest binding free energies and their gradients with respect to force field parameters, coupled with the curation of 126 host-guest complexes with available experimental binding free energies. As an initial application of this novel infrastructure, we optimized generalized Born (GB) cavity radii for the OBC2 GB implicit solvent model against experimental data for 36 host-guest systems. This refitting led to a dramatic improvement in accuracy for both the training set and a separate test set with 90 additional host-guest systems. The optimized radii also showed encouraging transferability from host-guest systems to 59 protein-ligand systems. However, the new radii are significantly smaller than the baseline radii and lead to excessively favorable hydration free energies (HFEs). Thus, users of the OBC2 GB model currently may choose between GB cavity radii that yield more accurate binding affinities and GB cavity radii that yield more accurate HFEs. We suspect that achieving good accuracy on both will require more far-reaching adjustments to the GB model. We note that binding free-energy calculations using the OBC2 model in OpenMM gain about a 10× speedup relative to corresponding explicit solvent calculations, suggesting a future role for implicit solvent absolute binding free-energy (ABFE) calculations in virtual compound screening. This study proves the principle of using host-guest systems to train potential functions that are transferrable to protein-ligand systems and provides an infrastructure that enables a range of applications.

摘要

用于更快速、更准确地预测蛋白质-配体结合亲和力的软件是早期药物发现的研究热点,基于物理的方法是最广泛使用的技术之一。这些方法的准确性取决于它们所使用的势能函数的准确性。势能函数通常是通过量子化学和实验数据的组合进行训练的。然而,尽管结合亲和力是最重要的预测数量之一,但实验结合亲和力尚未被整合到用于训练势能函数的实验数据集。近年来,由于其体积小、结构简单,相对于蛋白质-配体系统,主体-客体复合物作为结合热力学的简单而易于处理的模型越来越受欢迎。主体-客体复合物还可以避免蛋白质-配体系统中出现的不确定性,例如不确定的质子化状态。因此,实验主体-客体结合数据是一种有吸引力的额外数据类型,可以整合到用于优化势能函数的实验数据集中。在这里,我们报告了对开放式力场评估器框架的扩展,以实现系统地计算主体-客体结合自由能及其相对于力场参数的梯度,并对具有可用实验结合自由能的 126 个主体-客体复合物进行了整理。作为这种新架构的初步应用,我们针对 36 个主体-客体系统,优化了广义 Born (GB) 溶剂模型 OBC2 的空腔半径,以适应实验数据。这种重新拟合极大地提高了 36 个主体-客体系统的训练集和 90 个额外主体-客体系统的测试集的准确性。优化后的半径在主体-客体系统与 59 个蛋白质-配体系统之间也表现出令人鼓舞的可转移性。然而,新的半径明显小于基线半径,并导致过度有利的水合自由能 (HFE)。因此,OBC2 GB 模型的用户目前可以在产生更准确结合亲和力的 GB 空腔半径和产生更准确 HFE 的 GB 空腔半径之间进行选择。我们怀疑,要同时获得良好的准确性,需要对 GB 模型进行更深远的调整。我们注意到,在 OpenMM 中使用 OBC2 模型进行结合自由能计算相对于相应的显式溶剂计算速度提高了约 10 倍,这表明在虚拟化合物筛选中,隐式溶剂绝对结合自由能 (ABFE) 计算将发挥未来的作用。这项研究证明了使用主体-客体系统来训练可转移到蛋白质-配体系统的势能函数的原理,并提供了一个基础设施,支持各种应用。

相似文献

1
Tuning Potential Functions to Host-Guest Binding Data.调整势能函数以适应主客体结合数据。
J Chem Theory Comput. 2024 Jan 9;20(1):239-252. doi: 10.1021/acs.jctc.3c01050. Epub 2023 Dec 26.
4
Overview of the SAMPL5 host-guest challenge: Are we doing better?SAMPL5主客体挑战概述:我们是否取得了进步?
J Comput Aided Mol Des. 2017 Jan;31(1):1-19. doi: 10.1007/s10822-016-9974-4. Epub 2016 Sep 22.
6
Overview of the SAMPL6 host-guest binding affinity prediction challenge.SAMPL6 主客体结合亲和力预测挑战概述。
J Comput Aided Mol Des. 2018 Oct;32(10):937-963. doi: 10.1007/s10822-018-0170-6. Epub 2018 Nov 10.

本文引用的文献

4
An overview of the SAMPL8 host-guest binding challenge.SAMPL8 亲合作用结合挑战概述。
J Comput Aided Mol Des. 2022 Oct;36(10):707-734. doi: 10.1007/s10822-022-00462-5. Epub 2022 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验