Suppr超能文献

在铂模型催化剂上对普醛分解的初始反应中间体的机理和光谱学鉴定。

Mechanistic and spectroscopic identification of initial reaction intermediates for prenal decomposition on a platinum model catalyst.

机构信息

Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany.

出版信息

Phys Chem Chem Phys. 2011 Apr 7;13(13):6000-9. doi: 10.1039/c0cp02428g. Epub 2011 Feb 22.

Abstract

The prediction of a reaction mechanism and the identification of the corresponding chemical intermediates is a major challenge in surface science and heterogeneous catalysis, due to a complex network of elementary steps and surface species. Here we demonstrate how to overcome this difficulty by tracking the temperature dependent formation of the initial reaction intermediates and identifying the decomposition pathways in the case of prenal, an α,β-unsaturated aldehyde, on the Pt(111) model catalyst surface by combining vibrational spectroscopy, thermal reaction/desorption spectroscopy (TPRS) experiments and detailed theoretical analysis. TPRS characterization of this reaction up to 600 K shows a series of desorption states of H(2) (∼280 K, 410 K and 473 K) and CO (∼414 K), giving valuable insights into the sequence of elementary steps suggesting that the loss of hydrogen and the carbonyl functions are among the first elementary steps. HREELS experiments recorded after annealing to specific temperatures result in complex spectra, which can be assigned to several subsequently formed and transformed surface intermediates. Starting from stable prenal adsorption structures, complementary DFT calculations allow the determination of the most likely reaction pathway for the initial decomposition steps and the identification of the corresponding intermediates by comparison with HREELS. The decomposition occurs from the strongly bonded prenal adsorption structures via a dehydro-η(3)-triσ(CCC)-H1 intermediate to the highly stable η(1)-isobutylidyne species at high temperatures.

摘要

预测反应机制并鉴定相应的化学中间体是表面科学和多相催化领域的主要挑战,这是由于基本步骤和表面物种的复杂网络所致。在这里,我们通过跟踪初始反应中间体的温度依赖性形成,并在 Pt(111)模型催化剂表面上对α,β-不饱和醛普瑞醇的情况下识别其分解途径,证明了如何克服这一困难,该途径通过结合振动光谱、热反应/解吸光谱(TPRS)实验和详细的理论分析来实现。高达 600 K 的 TPRS 对该反应的表征显示出一系列 H2(约 280 K、410 K 和 473 K)和 CO(约 414 K)的解吸态,为基本步骤的顺序提供了有价值的见解,表明氢和羰基的损失是最初的基本步骤之一。在特定温度下退火后记录的 HREELS 实验产生了复杂的光谱,可以将其分配给随后形成和转化的几个表面中间体。从稳定的普瑞醇吸附结构开始,通过与 HREELS 比较的补充 DFT 计算,可以确定初始分解步骤的最可能反应途径并鉴定相应的中间体。在高温下,通过脱氢-η(3)-三σ(CCC)-H1 中间体从强键合的普瑞醇吸附结构分解为高度稳定的η(1)-异丁基乙炔物种。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验