Departments of †Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.
Bioconjug Chem. 2011 Mar 16;22(3):466-74. doi: 10.1021/bc100484t. Epub 2011 Feb 23.
Although bioactive polymers such as cationic polymers have demonstrated potential as drug carriers and nonviral gene delivery vectors, high toxicity and uncontrolled, instantaneous cellular interactions of those vectors have hindered the successful implementation In Vivo. Fine control over the cellular interactions of a potential drug/gene delivery vector would be thus desirable. Herein, we have designed nanohybrid systems (100-150 nm in diameter) that combine the polycations with protective outer layers consisting of biodegradable polymeric nanoparticles (NPs) or liposomes. A commonly used polycation polyethylenimine (PEI) was employed after conjugation with rhodamine (RITC). The PEI-RITC conjugates were then encapsulated into (i) polymeric NPs made of either poly(lactide-co-glycolide) (PLGA) or poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA); or (ii) PEGylated liposomes, resulting in three nanohybrid systems. Through the nanohybridization, both cellular uptake and cytotoxicity of the nanohybrids were kinetically controlled. The cytotoxicity assay using MCF-7 cells revealed that liposome-based nanohybrids exhibited the least toxicity, followed by PEG-PLGA- and PLGA-based NPs after 24 h incubation. The different kinetics of cellular uptake was also observed, the liposome-based systems being the fastest and PLGA-based systems being the slowest. The results present a potential delivery platform with enhanced control over its biological interaction kinetics and passive targeting capability through size control.
虽然阳离子聚合物等生物活性聚合物已被证明具有作为药物载体和非病毒基因传递载体的潜力,但这些载体的高毒性和不可控的瞬时细胞相互作用阻碍了其在体内的成功应用。因此,对潜在药物/基因传递载体的细胞相互作用进行精细控制是非常理想的。在这里,我们设计了纳米杂化系统(直径为 100-150nm),将聚阳离子与由可生物降解的聚合物纳米颗粒(NPs)或脂质体组成的保护性外层结合。我们使用了一种常用的聚阳离子聚乙烯亚胺(PEI),并用罗丹明(RITC)进行了修饰。然后,将 PEI-RITC 缀合物封装到(i)由聚(乳酸-共-乙醇酸)(PLGA)或聚乙二醇-b-聚(乳酸-共-乙醇酸)(PEG-PLGA)制成的聚合物 NPs 中;或(ii)PEG 化脂质体中,得到三种纳米杂化系统。通过纳米杂化,纳米杂化物的细胞摄取和细胞毒性都得到了动力学控制。使用 MCF-7 细胞进行的细胞毒性测定表明,基于脂质体的纳米杂化物的毒性最小,其次是基于 PEG-PLGA 和 PLGA 的 NPs,在孵育 24 小时后。还观察到不同的细胞摄取动力学,基于脂质体的系统最快,基于 PLGA 的系统最慢。结果表明,通过控制尺寸,提供了一种具有增强的生物相互作用动力学控制和被动靶向能力的潜在递药平台。