Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France.
Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary.
J Med Microbiol. 2011 May;60(Pt 5):563-573. doi: 10.1099/jmm.0.024083-0. Epub 2011 Feb 24.
Heritable hypermutation in bacteria is mainly due to alterations in the methyl-directed mismatch repair (MMR) system. MMR-deficient strains have been described from several bacterial species, and all of the strains exhibit increased mutation frequency and recombination, which are important mechanisms for acquired drug resistance in bacteria. Antibiotics select for drug-resistant strains and refine resistance determinants on plasmids, thus stimulating DNA recombination via the MMR system. Antibiotics can also act as indirect promoters of antibiotic resistance by inducing the SOS system and certain error-prone DNA polymerases. These alterations have clinical consequences in that efficacious treatment of bacterial infections requires high doses of antibiotics and/or a combination of different classes of antimicrobial agents. There are currently few new drugs with low endogenous resistance potential, and the development of such drugs merits further research.
细菌中的遗传突变主要归因于甲基化导向的错配修复(MMR)系统的改变。已经从几种细菌物种中描述了 MMR 缺陷菌株,并且所有菌株都表现出增加的突变频率和重组,这是细菌获得性耐药的重要机制。抗生素选择耐药菌株,并在质粒上精制耐药决定因素,从而通过 MMR 系统刺激 DNA 重组。抗生素还可以通过诱导 SOS 系统和某些易错 DNA 聚合酶来充当抗生素耐药性的间接促进剂。这些改变在临床上具有重要意义,因为有效治疗细菌感染需要高剂量的抗生素和/或不同类别的抗菌药物联合使用。目前具有低内源性耐药潜力的新药很少,因此值得进一步研究开发此类药物。