Suppr超能文献

综述:黑腹果蝇的耐缺氧和抗氧化应激能力。

Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster.

机构信息

Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, CA 92093-0735, USA.

出版信息

Placenta. 2011 Mar;32 Suppl 2(Suppl 2):S104-8. doi: 10.1016/j.placenta.2010.11.017.

Abstract

Oxygen (O(2)) is essential for aerobic life; however, the level of O(2), whether too low (hypoxia) or too high (hyperoxia), can induce oxidative injury and increase morbidity and mortality. Disruption of O(2) homeostasis represents a major aspect of many disease etiologies and pathobiology. In the past, our laboratory has been using Drosophila melanogaster to investigate the cellular and molecular aspects of the response to hypoxia and oxidative stress. There are several advantages for using Drosophila as a model system, the most important one being an evolutionary conservation of genetic and signaling pathways from Drosophila to mammals. As a proof of this concept, we have shown that we can substantially improve the tolerance of human cells in culture by transfecting these cells with particular Drosophila genes. In this review, we summarize the recent findings from our laboratory using Drosophila as a model system to investigate the genetic basis of hypoxia/hyperoxia tolerance. We have done microarray studies and identified several oxidative stress resistance genes that play an important role in individual paradigms such as constant or intermittent hypoxia, short term (days) or long term (generations) hypoxia/hyperoxia. Our studies provide evidence that a pattern of oxidative stress is specific in inducing a gene expression profile which, in turn, plays an important role in modulating the phenotype. To improve our understanding of oxidative and hypoxic stress as well as its associated diseases, multi-disciplinary approaches are necessary and critical in the study of complicated issues in systems biology.

摘要

氧气(O2)是有氧生命所必需的;然而,氧气水平过低(缺氧)或过高(富氧)都可能导致氧化损伤,增加发病率和死亡率。氧平衡的破坏是许多疾病病因和病理生物学的主要方面。在过去,我们的实验室一直使用黑腹果蝇来研究对缺氧和氧化应激的细胞和分子反应。使用果蝇作为模型系统有几个优点,最重要的是果蝇到哺乳动物的遗传和信号通路具有进化上的保守性。作为这一概念的证明,我们已经表明,通过将特定的果蝇基因转染到这些细胞中,可以大大提高培养的人类细胞的耐受性。在这篇综述中,我们总结了我们实验室最近使用果蝇作为模型系统来研究缺氧/富氧耐受性的遗传基础的发现。我们进行了微阵列研究,鉴定了几个氧化应激抗性基因,这些基因在诸如持续或间歇性缺氧、短期(数天)或长期(几代)缺氧/富氧等特定范例中发挥着重要作用。我们的研究提供了证据表明,氧化应激模式在诱导特定的基因表达谱方面具有特异性,而该表达谱反过来又在调节表型方面起着重要作用。为了更好地理解氧化应激和缺氧及其相关疾病,多学科方法在系统生物学中研究复杂问题时是必要和关键的。

相似文献

1
Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster.
Placenta. 2011 Mar;32 Suppl 2(Suppl 2):S104-8. doi: 10.1016/j.placenta.2010.11.017.
2
Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster.
PLoS One. 2009;4(4):e5371. doi: 10.1371/journal.pone.0005371. Epub 2009 Apr 29.
3
Experimental selection for Drosophila survival in extremely low O(2) environment.
PLoS One. 2007 May 30;2(5):e490. doi: 10.1371/journal.pone.0000490.
4
Antimicrobial peptides increase tolerance to oxidant stress in Drosophila melanogaster.
J Biol Chem. 2011 Feb 25;286(8):6211-8. doi: 10.1074/jbc.M110.181206. Epub 2010 Dec 9.
6
Experimental selection for Drosophila survival in extremely high O2 environments.
PLoS One. 2010 Jul 23;5(7):e11701. doi: 10.1371/journal.pone.0011701.
7
Enhancing our understanding of the molecular responses to hypoxia in mammals using Drosophila melanogaster.
J Appl Physiol (1985). 2000 Apr;88(4):1481-7. doi: 10.1152/jappl.2000.88.4.1481.
9
Ultrastructural modifications in the mitochondria of hypoxia-adapted Drosophila melanogaster.
PLoS One. 2012;7(9):e45344. doi: 10.1371/journal.pone.0045344. Epub 2012 Sep 19.
10
Brain aging, memory impairment and oxidative stress: a study in Drosophila melanogaster.
Behav Brain Res. 2014 Feb 1;259:60-9. doi: 10.1016/j.bbr.2013.10.036. Epub 2013 Oct 30.

引用本文的文献

1
Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure.
Biol Open. 2022 Jun 15;11(6). doi: 10.1242/bio.059386. Epub 2022 Jun 29.
2
SLC22 Transporters in the Fly Renal System Regulate Response to Oxidative Stress In Vivo.
Int J Mol Sci. 2021 Dec 14;22(24):13407. doi: 10.3390/ijms222413407.
4
Hypoxia Tolerance Declines with Age in the Absence of Methionine Sulfoxide Reductase (MSR) in .
Antioxidants (Basel). 2021 Jul 17;10(7):1135. doi: 10.3390/antiox10071135.
5
Dexamethasone vs COVID-19: An experimental study in line with the preliminary findings of a large trial.
Int J Clin Pract. 2021 Jun;75(6):e13943. doi: 10.1111/ijcp.13943. Epub 2020 Dec 30.
6
Role of Modified Atmosphere in Pest Control and Mechanism of Its Effect on Insects.
Front Physiol. 2019 Mar 12;10:206. doi: 10.3389/fphys.2019.00206. eCollection 2019.
7
Carbohydrate Metabolic Compensation Coupled to High Tolerance to Oxidative Stress in Ticks.
Sci Rep. 2019 Mar 18;9(1):4753. doi: 10.1038/s41598-019-41036-0.
8
leaf essential oil promotes mitochondrial dysfunction in through the inhibition of oxidative phosphorylation.
Toxicol Res (Camb). 2017 May 5;6(4):526-534. doi: 10.1039/c7tx00072c. eCollection 2017 Jul 1.
9
Cortical movement of Bicoid in early Drosophila embryos is actin- and microtubule-dependent and disagrees with the SDD diffusion model.
PLoS One. 2017 Oct 3;12(10):e0185443. doi: 10.1371/journal.pone.0185443. eCollection 2017.

本文引用的文献

1
Experimental selection for Drosophila survival in extremely high O2 environments.
PLoS One. 2010 Jul 23;5(7):e11701. doi: 10.1371/journal.pone.0011701.
2
Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster.
PLoS One. 2009;4(4):e5371. doi: 10.1371/journal.pone.0005371. Epub 2009 Apr 29.
3
Hyperoxia-induced neonatal rat lung injury involves activation of TGF-{beta} and Wnt signaling and is protected by rosiglitazone.
Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L1031-41. doi: 10.1152/ajplung.90392.2008. Epub 2009 Mar 20.
4
Modeling Tauopathy in the fruit fly Drosophila melanogaster.
J Alzheimers Dis. 2008 Dec;15(4):541-53. doi: 10.3233/jad-2008-15403.
5
Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway.
Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L296-306. doi: 10.1152/ajplung.90499.2008. Epub 2008 Dec 12.
6
Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch.
PLoS Genet. 2008 Oct;4(10):e1000221. doi: 10.1371/journal.pgen.1000221. Epub 2008 Oct 17.
7
Network analysis of temporal effects of intermittent and sustained hypoxia on rat lungs.
Physiol Genomics. 2008 Dec 12;36(1):24-34. doi: 10.1152/physiolgenomics.00258.2007. Epub 2008 Sep 30.
8
Mitochondria and ageing in Drosophila.
Biotechnol J. 2008 Jun;3(6):728-39. doi: 10.1002/biot.200800015.
9
Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival.
Funct Integr Genomics. 2008 Aug;8(3):265-75. doi: 10.1007/s10142-008-0082-y. Epub 2008 May 1.
10
The role of IL-6 and IL-11 in hyperoxic injury in developing lung.
Pediatr Pulmonol. 2008 Mar;43(3):297-304. doi: 10.1002/ppul.20777.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验