Suppr超能文献

在加速和减速行走过程中,制动和推进脉冲随速度增加而增加。

Braking and propulsive impulses increase with speed during accelerated and decelerated walking.

机构信息

Department of Mechanical Engineering, The University of Texas at Austin, TX 78712, USA.

出版信息

Gait Posture. 2011 Apr;33(4):562-7. doi: 10.1016/j.gaitpost.2011.01.010. Epub 2011 Feb 26.

Abstract

The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from 10 healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0-1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects' preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking.

摘要

加速和减速的能力对于日常活动很重要,而且可能比维持稳定的步行速度要求更高。步行速度是通过前后(AP)地面反作用力(GRF)脉冲来调节的。本研究的目的是在加速和减速行走过程中研究整个速度范围内的 AP 脉冲。运动学和 GRF 数据是从在仪器化跑步机上行走的 10 名健康受试者中收集的。受试者在稳态速度和四个加速度和减速度下完成试验,速度范围为 0-1.8 m/s。混合回归模型用于预测 AP 脉冲、步长和频率与速度的关系,以及非稳态行走时关节力矩脉冲与 AP 脉冲的关系。制动和推进脉冲与速度呈正相关。制动脉冲与速度的关系大于推进脉冲,这表明受试者通过调节制动脉冲而不是推进脉冲来改变速度。髋关节和膝关节伸肌以及踝关节跖屈肌力矩脉冲与制动脉冲呈正相关,而膝关节屈肌和踝关节跖屈肌力矩脉冲与推进脉冲呈正相关。步长和频率随速度增加,且在稳态速度下接近受试者的最佳组合,在非残疾行走中,代谢成本最小化。因此,这些变量可能会被调节以最小化代谢成本,同时加速和减速。这项工作的结果为研究病理受试者在非稳态行走增加的任务要求下的运动协调提供了基础。

相似文献

1
Braking and propulsive impulses increase with speed during accelerated and decelerated walking.
Gait Posture. 2011 Apr;33(4):562-7. doi: 10.1016/j.gaitpost.2011.01.010. Epub 2011 Feb 26.
2
Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking.
Gait Posture. 2010 Oct;32(4):451-6. doi: 10.1016/j.gaitpost.2010.06.014. Epub 2010 Jul 24.
3
The influence of solid ankle-foot-orthoses on forward propulsion and dynamic balance in healthy adults during walking.
Clin Biomech (Bristol). 2014 May;29(5):583-9. doi: 10.1016/j.clinbiomech.2014.02.007. Epub 2014 Mar 7.
4
Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
Gait Posture. 2008 Nov;28(4):602-9. doi: 10.1016/j.gaitpost.2008.04.005. Epub 2008 Jun 2.
5
Lower-limb joint mechanics during maximum acceleration sprinting.
J Exp Biol. 2019 Nov 25;222(Pt 22):jeb209460. doi: 10.1242/jeb.209460.
6
Lower extremity sagittal joint moment production during split-belt treadmill walking.
J Biomech. 2012 Nov 15;45(16):2817-21. doi: 10.1016/j.jbiomech.2012.08.036. Epub 2012 Sep 14.
7
Time-integrated propulsive and braking impulses do not depend on walking speed.
Gait Posture. 2021 Jul;88:258-263. doi: 10.1016/j.gaitpost.2021.06.012. Epub 2021 Jun 11.
8
Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
Hum Mov Sci. 2018 Apr;58:260-267. doi: 10.1016/j.humov.2018.03.002. Epub 2018 Mar 12.

引用本文的文献

1
Enhancing Robot Transparency in Human-Robot Prosthesis Interaction to Mitigate Terrain Misrecognition Error.
IEEE Trans Med Robot Bionics. 2025 May;7(2):734-742. doi: 10.1109/tmrb.2025.3552924. Epub 2025 Mar 19.
3
Individual joint contributions to forward propulsion during treadmill walking in women with hip osteoarthritis.
J Orthop Res. 2025 Jan;43(1):94-101. doi: 10.1002/jor.25964. Epub 2024 Aug 31.
4
Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals.
Front Hum Neurosci. 2023 Dec 4;17:1214967. doi: 10.3389/fnhum.2023.1214967. eCollection 2023.
5
How Important is Position in Adaptive Treadmill Control?
J Biomech Eng. 2024 Jan 1;146(1). doi: 10.1115/1.4063823.
7
Quantifying mechanical and metabolic interdependence between speed and propulsive force during walking.
Front Sports Act Living. 2022 Sep 9;4:942498. doi: 10.3389/fspor.2022.942498. eCollection 2022.
9
Kinematic analysis of speed transitions within walking in younger and older adults.
J Biomech. 2022 Jun;138:111130. doi: 10.1016/j.jbiomech.2022.111130. Epub 2022 May 10.
10
Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed.
J Biomech. 2022 Mar;133:110971. doi: 10.1016/j.jbiomech.2022.110971. Epub 2022 Jan 28.

本文引用的文献

1
Modulation of leg muscle function in response to altered demand for body support and forward propulsion during walking.
J Biomech. 2009 May 11;42(7):850-6. doi: 10.1016/j.jbiomech.2009.01.025. Epub 2009 Feb 27.
2
How humans walk: bout duration, steps per bout, and rest duration.
J Rehabil Res Dev. 2008;45(7):1077-89. doi: 10.1682/jrrd.2007.11.0197.
3
Muscle contributions to support and progression over a range of walking speeds.
J Biomech. 2008 Nov 14;41(15):3243-52. doi: 10.1016/j.jbiomech.2008.07.031. Epub 2008 Sep 25.
4
Can treadmill walking be used to assess propulsion generation?
J Biomech. 2008;41(8):1805-8. doi: 10.1016/j.jbiomech.2008.03.009. Epub 2008 Apr 23.
5
The effect of walking speed on muscle function and mechanical energetics.
Gait Posture. 2008 Jul;28(1):135-43. doi: 10.1016/j.gaitpost.2007.11.004. Epub 2007 Dec 26.
6
Kinetic mechanisms to alter walking speed.
Gait Posture. 2008 May;27(4):603-10. doi: 10.1016/j.gaitpost.2007.08.004. Epub 2007 Oct 25.
7
Mechanical power and efficiency of level walking with different stride rates.
J Exp Biol. 2007 Sep;210(Pt 18):3255-65. doi: 10.1242/jeb.000950.
8
Spatiotemporal characteristics of the walk-to-run and run-to-walk transition when gradually changing speed.
Gait Posture. 2006 Oct;24(2):247-54. doi: 10.1016/j.gaitpost.2005.09.006. Epub 2005 Nov 28.
9
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.
10
Speed related changes in muscle activity from normal to very slow walking speeds.
Gait Posture. 2004 Jun;19(3):270-8. doi: 10.1016/S0966-6362(03)00071-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验