Suppr超能文献

带电壁上的抗衡离子:二维系统

Counter-ions at charged walls: two-dimensional systems.

作者信息

Samaj L, Trizac E

机构信息

Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, UMR CNRS 8626, 91405, Orsay, France.

出版信息

Eur Phys J E Soft Matter. 2011 Feb;34(2):20. doi: 10.1140/epje/i2011-11020-1. Epub 2011 Feb 28.

Abstract

We study equilibrium statistical mechanics of classical point counter-ions, formulated on 2D Euclidean space with logarithmic Coulomb interactions (infinite number of particles) or on the cylinder surface (finite particle numbers), in the vicinity of a single uniformly charged line (one single double layer), or between two such lines (interacting double layers). The weak-coupling Poisson-Boltzmann theory, which applies when the coupling constant [Formula: see text] is small, is briefly recapitulated (the coupling constant is defined as [Formula: see text] [Formula: see text] [Formula: see text] e (2) , where [Formula: see text] is the inverse temperature, and e the counter-ion charge). The opposite limit ( [Formula: see text] [Formula: see text] ∞ is treated by using a recent method based on an exact expansion around the ground-state Wigner crystal of counter-ions. These two limiting results are compared at intermediary values of the coupling constant [Formula: see text] = 2[Formula: see text] ([Formula: see text] = 1, 2, 3) , to exact results derived within a 1D lattice representation of 2D Coulomb systems in terms of anti-commuting field variables. The models (density profile, pressure) are solved exactly for any particles numbers N at [Formula: see text] = 2 and up to relatively large finite N at [Formula: see text] = 4 and 6. For the one-line geometry, the decay of the density profile at asymptotic distance from the line undergoes a fundamental change with respect to the mean-field behavior at [Formula: see text] = 6 . The like-charge attraction regime, possible for large [Formula: see text] but precluded at mean-field level, survives for [Formula: see text] = 4 and 6, but disappears at [Formula: see text] = 2 .

摘要

我们研究经典点反离子的平衡统计力学,该力学建立在具有对数库仑相互作用的二维欧几里得空间(粒子数无限)或圆柱表面(有限粒子数)上,处于单个均匀带电线(单个双层)附近,或两条这样的线之间(相互作用的双层)。简要概括了弱耦合泊松 - 玻尔兹曼理论,该理论适用于耦合常数[公式:见正文]较小时的情况(耦合常数定义为[公式:见正文][公式:见正文][公式:见正文]e(2),其中[公式:见正文]是逆温度,e是反离子电荷)。通过使用基于反离子基态维格纳晶体精确展开的最新方法来处理相反的极限情况([公式:见正文][公式:见正文]∞)。在耦合常数[公式:见正文]= 2[公式:见正文]([公式:见正文]= 1, 2, 3)的中间值下,将这两个极限结果与在二维库仑系统的一维晶格表示中根据反对易场变量得出的精确结果进行比较。对于任何粒子数N,在[公式:见正文]= 2时以及在[公式:见正文]= 4和6时直至相对较大的有限N,精确求解模型(密度分布、压力)。对于单线几何结构,在距线的渐近距离处密度分布的衰减相对于[公式:见正文]= 6时的平均场行为发生了根本变化。对于大的[公式:见正文]可能出现但在平均场水平被排除的同电荷吸引区域,在[公式:见正文]= 4和6时仍然存在,但在[公式:见正文]= 2时消失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验