Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
J Biomol NMR. 2011 May;50(1):71-81. doi: 10.1007/s10858-011-9495-3. Epub 2011 Mar 1.
Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca(2+)-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaM's backbone conformation and a structural plasticity in CaM's domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in the complex, they lack the translational information required to position the domains on the bound peptide and highlight the necessity of intermolecular NOEs. Here we employ a specific isotope labeling strategy in which the role of methionine in CaM-peptide interactions is exploited to collect these critical NOEs. By (1)H, (13)C-labeling the methyl groups of deuterated methionine against a (2)H, (12)C background, we can acquire a (13)C-edited NOESY characterized by simplified, easily analyzable spectra. Together with measured CaM backbone H(N)-N RDCs and intrapeptide NOE-based distances, these intermolecular NOEs provide restraints for a low temperature torsion-angle dynamics and simulated annealing protocol used to calculate the complex structure. We have applied our method to a CaM complex previously solved through X-ray crystallography: Ca(2+)-CaM bound to the CaM kinase I peptide (PDB code: 1MXE). The resulting structure has a backbone RMSD of 1.6 Å to that previously published. We have also used this test complex to investigate the importance of homologous model selection on the calculated outcome. In addition to having application for fast complex structure determination, this method can be used to determine the structures of difficult complexes characterized by chemical shift overlap and broad signals for which the traditional method based on the use of fully (13)C, (15)N-labeled CaM fails.
在这里,我们提出了一种新的 NMR 方法,用于从有限的实验约束条件下确定钙-钙调蛋白 (Ca(2+)-CaM)-肽复合物的结构。对已解决的 CaM-肽结构的比较表明,CaM 的骨架构象具有不变性,而 CaM 结构域的取向具有结构灵活性,这是由柔性连接子实现的。了解这一点后,收集和分析大量的 NOESY 谱就变得多余了。尽管 RDC 可以定义复合物中 CaM 结构域的取向,但它们缺乏将结构域定位在结合肽上的平移信息,并突出了分子间 NOE 的必要性。在这里,我们采用了一种特定的同位素标记策略,利用 CaM-肽相互作用中蛋氨酸的作用来收集这些关键的 NOE。通过对氘代蛋氨酸的甲基进行 (1)H、(13)C 标记,而对 (2)H、(12)C 背景进行 (13)C 编辑 NOESY,我们可以获得具有简化、易于分析谱图的 (13)C 编辑 NOESY。与测量得到的 CaM 骨架 H(N)-N RDC 和基于肽内 NOE 的距离一起,这些分子间 NOE 为低温扭转角动力学和模拟退火方案提供了约束条件,用于计算复合物的结构。我们已经将我们的方法应用于一个以前通过 X 射线晶体学解决的 CaM 复合物:与 CaM 激酶 I 肽(PDB 代码:1MXE)结合的 Ca(2+)-CaM。得到的结构与以前发表的结构的骨架 RMSD 为 1.6 Å。我们还使用这个测试复合物来研究同源模型选择对计算结果的重要性。除了适用于快速复合物结构确定外,这种方法还可用于确定结构复杂、化学位移重叠且信号较宽的困难复合物的结构,对于这些复合物,传统的基于完全 (13)C、(15)N 标记 CaM 的方法无法使用。