Suppr超能文献

用于 CT 的患者特异性辐射剂量和癌症风险估算:第一部分。一个蒙特卡罗程序的开发和验证。

Patient-specific radiation dose and cancer risk estimation in CT: part I. development and validation of a Monte Carlo program.

机构信息

Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705, USA.

出版信息

Med Phys. 2011 Jan;38(1):397-407. doi: 10.1118/1.3515839.

Abstract

PURPOSE

Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations.

METHODS

A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans.

RESULTS

For the cylindrical phantom, simulations differed from measurements by -4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (-8.1%, 8.1%) and (-17.2%, 13.0%) for the single axial scans and the helical scans, respectively.

CONCLUSIONS

The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients.

摘要

目的

在 CT 中提高对辐射剂量的认识并进行优化,这可以极大地受益于一种剂量报告系统,该系统可针对每个患者和每次 CT 检查提供剂量和风险估计。作为对患者特异性剂量和风险估计的第一步,本文旨在开发一种准确评估 CT 检查辐射剂量的方法。

方法

开发了一个蒙特卡罗程序来模拟 CT 系统(GE Healthcare 的 LightSpeed VCT)。系统的几何形状、射线源的能谱、带通滤波器的三维几何形状以及轴向和螺旋扫描期间源运动的轨迹都被明确建模。为了验证程序的准确性,构建了一个圆柱形体模,以便能够在距其中心轴的七个不同径向距离处进行剂量测量。在所有管电压和带通滤波器设置组合下,对圆柱形体模中的模拟径向剂量分布与单次轴向扫描的电离室测量进行了验证。使用两个人体模型(一个儿科一岁的模型和一个成年女性的模型)进一步验证了程序的准确性。基于其 CT 数据创建了这两个体模的计算机模型,并进行体素化以输入到蒙特卡罗程序中。对各种器官位置的模拟剂量与使用热释光剂量计芯片进行的单次轴向和螺旋扫描测量进行了比较。

结果

对于圆柱形体模,模拟值与测量值的差异在-4.8%至 2.2%之间。对于两个人体模型,在单次轴向扫描和螺旋扫描中,模拟值与测量值之间的差异分别在(-8.1%,8.1%)和(-17.2%,13.0%)之间。

结论

作者开发了一种用于评估 CT 检查辐射剂量的准确蒙特卡罗程序。当与实际患者的计算机模型相结合时,该程序可以为特定患者提供准确的剂量估计。

相似文献

2
A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
Phys Med Biol. 2005 Sep 7;50(17):3989-4004. doi: 10.1088/0031-9155/50/17/005. Epub 2005 Aug 11.
8
Patient-specific CT dosimetry calculation: a feasibility study.
J Appl Clin Med Phys. 2011 Nov 15;12(4):3589. doi: 10.1120/jacmp.v12i4.3589.
10
Development and validation of an open source Monte Carlo dosimetry model for wide-beam CT scanners using Fluka.
J Appl Clin Med Phys. 2019 Apr;20(4):132-147. doi: 10.1002/acm2.12559. Epub 2019 Mar 9.

引用本文的文献

1
Library of realistic 4D digital beating heart models based on patient CT data.
Med Phys. 2025 Jul;52(7):e17945. doi: 10.1002/mp.17945.
2
In silico modeling of a clinical photon-counting CT system: Verification and validation.
Med Phys. 2025 Jun;52(6):3840-3853. doi: 10.1002/mp.17886. Epub 2025 May 13.
4
Accuracy of patient-specific CT organ doses from Monte Carlo simulations: influence of CT-based voxel models.
Phys Eng Sci Med. 2024 Sep;47(3):989-1000. doi: 10.1007/s13246-024-01422-z. Epub 2024 Apr 18.
7
A scanner-specific framework for simulating CT images with tube current modulation.
Phys Med Biol. 2021 Sep 13;66(18). doi: 10.1088/1361-6560/ac2269.
8
PATIENT-SPECIFIC DOSE ESTIMATES IN DYNAMIC COMPUTED TOMOGRAPHY MYOCARDIAL PERFUSION EXAMINATION.
Radiat Prot Dosimetry. 2021 Jan 15;193(1):24-36. doi: 10.1093/rpd/ncab016.
9
Patient-Informed Organ Dose Estimation in Clinical CT: Implementation and Effective Dose Assessment in 1048 Clinical Patients.
AJR Am J Roentgenol. 2021 Mar;216(3):824-834. doi: 10.2214/AJR.19.22482. Epub 2021 Jan 21.
10
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.

本文引用的文献

4
Realistic CT simulation using the 4D XCAT phantom.
Med Phys. 2008 Aug;35(8):3800-8. doi: 10.1118/1.2955743.
6
The 'Image Gently' campaign: increasing CT radiation dose awareness through a national education and awareness program.
Pediatr Radiol. 2008 Mar;38(3):265-9. doi: 10.1007/s00247-007-0743-3. Epub 2008 Jan 17.
7
Managing patient dose in multi-detector computed tomography(MDCT). ICRP Publication 102.
Ann ICRP. 2007;37(1):1-79, iii. doi: 10.1016/j.icrp.2007.09.001.
8
Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography.
Eur Radiol. 2008 Apr;18(4):759-72. doi: 10.1007/s00330-007-0815-7. Epub 2007 Dec 8.
10
American College of Radiology white paper on radiation dose in medicine.
J Am Coll Radiol. 2007 May;4(5):272-84. doi: 10.1016/j.jacr.2007.03.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验