Suppr超能文献

使用历史数据的医疗器械非劣效性试验的贝叶斯设计。

Bayesian design of noninferiority trials for medical devices using historical data.

作者信息

Chen Ming-Hui, Ibrahim Joseph G, Lam Peter, Yu Alan, Zhang Yuanye

机构信息

Department of Statistics, University of Connecticut, 215 Glenbrook Road, Storrs, Connecticut 06269, USA.

出版信息

Biometrics. 2011 Sep;67(3):1163-70. doi: 10.1111/j.1541-0420.2011.01561.x. Epub 2011 Mar 1.

Abstract

We develop a new Bayesian approach of sample size determination (SSD) for the design of noninferiority clinical trials. We extend the fitting and sampling priors of Wang and Gelfand (2002, Statistical Science 17, 193-208) to Bayesian SSD with a focus on controlling the type I error and power. Historical data are incorporated via a hierarchical modeling approach as well as the power prior approach of Ibrahim and Chen (2000, Statistical Science 15, 46-60). Various properties of the proposed Bayesian SSD methodology are examined and a simulation-based computational algorithm is developed. The proposed methodology is applied to the design of a noninferiority medical device clinical trial with historical data from previous trials.

摘要

我们开发了一种用于非劣效性临床试验设计的新的贝叶斯样本量确定(SSD)方法。我们将Wang和Gelfand(2002年,《统计科学》17卷,193 - 208页)的拟合和抽样先验方法扩展到贝叶斯SSD,重点是控制I型错误和检验效能。通过分层建模方法以及Ibrahim和Chen(2000年,《统计科学》15卷,46 - 60页)的效能先验方法纳入历史数据。研究了所提出的贝叶斯SSD方法的各种性质,并开发了一种基于模拟的计算算法。所提出的方法应用于一个具有先前试验历史数据的非劣效性医疗器械临床试验的设计。

相似文献

8
Bayesian approach to noninferiority trials for proportions.比例非劣效性试验的贝叶斯方法。
J Biopharm Stat. 2011 Sep;21(5):902-19. doi: 10.1080/10543406.2011.589646.

引用本文的文献

6
Bayesian Design of Superiority Trials: Methods and Applications.优效性试验的贝叶斯设计:方法与应用
Stat Biopharm Res. 2022;14(4):433-443. doi: 10.1080/19466315.2022.2090429. Epub 2022 Jul 18.

本文引用的文献

3
A note on the power prior.关于幂先的注释。
Stat Med. 2009 Dec 10;28(28):3562-6. doi: 10.1002/sim.3722.
4
Current issues in non-inferiority trials.非劣效性试验中的当前问题。
Stat Med. 2008 Feb 10;27(3):317-32. doi: 10.1002/sim.2855.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验