Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
J Mol Cell Cardiol. 2011 May;50(5):903-9. doi: 10.1016/j.yjmcc.2011.02.013. Epub 2011 Feb 26.
Ischemic postconditioning has been demonstrated to limit infarct size in patients, but its molecular mechanisms remain incompletely understood. Low intracellular pH (pHi) inhibits mitochondrial permeability transition, calpain activation and hypercontracture. Recently, delayed normalization of pHi during reperfusion has been shown to play an important role in postconditioning protection, but its relation with intracellular protective signaling cascades is unknown. The present study investigates the relation between the rate of pHi normalization and the cGMP/PKG pathway in postconditioned myocardium. In isolated Sprague-Dawley rat hearts submitted to transient ischemia both, postconditioning and acidic reperfusion protocols resulted in a similar delay in pHi recovery measured by (31)P-NMR spectroscopy (3.6±0.2min and 3.5±0.2min respectively vs. 1.4±0.2min in control group, P<0.01) and caused equivalent cardioprotection (48% and 41% of infarct reduction respectively, P<0.01), but only postconditioning increased myocardial cGMP levels (P=0.02) and activated PKG. Blockade of cGMP/PKG pathway by the addition of the guanylyl cyclase inhibitor ODQ or the PKG inhibitor KT5823 during reperfusion accelerated pHi recovery and abolished cardioprotection in postconditioned hearts, but had no effect in hearts subjected to acidic reperfusion suggesting that PKG signaling was upstream of delayed pHi normalization in postconditioned hearts. In isolated cardiomyocytes the cGMP analog 8-pCPT-cGMP delayed Na(+)/H(+)-exchange mediated pHi normalization after acidification induced by a NH(4)Cl pulse. These results demonstrate that the cGMP/PKG pathway contributes to postconditioning protection at least in part by delaying normalization of pHi during reperfusion, probably via PKG-dependent inhibition of Na(+)/H(+)-exchanger.
缺血后处理已被证实可缩小患者的梗塞面积,但其中的分子机制尚不完全清楚。细胞内低 pH 值(pHi)可抑制线粒体通透性转换、钙蛋白酶激活和过度收缩。最近的研究表明,再灌注期间 pHi 的延迟正常化在缺血后处理保护中发挥重要作用,但它与细胞内保护信号级联的关系尚不清楚。本研究探讨了 pHi 正常化速率与缺血后处理心肌中环鸟苷酸/蛋白激酶 G(cGMP/PKG)途径之间的关系。在经历短暂缺血的分离的 Sprague-Dawley 大鼠心脏中,缺血后处理和酸性再灌注方案均导致 pHi 恢复的测量值(通过 31P-NMR 光谱)相似延迟(分别为 3.6±0.2min 和 3.5±0.2min,而对照组为 1.4±0.2min,P<0.01),并引起等效的心脏保护作用(分别减少 48%和 41%的梗塞面积,P<0.01),但只有缺血后处理增加了心肌 cGMP 水平(P=0.02)并激活了 PKG。在再灌注期间加入鸟苷酸环化酶抑制剂 ODQ 或 PKG 抑制剂 KT5823 阻断 cGMP/PKG 途径可加速缺血后处理心脏的 pHi 恢复并消除心脏保护作用,但对经历酸性再灌注的心脏没有影响,提示 PKG 信号转导位于缺血后处理心脏中 pHi 延迟正常化的上游。在分离的心肌细胞中,cGMP 类似物 8-pCPT-cGMP 可延迟由 NH4Cl 脉冲诱导的酸化后 Na+/H+交换介导的 pHi 正常化。这些结果表明,cGMP/PKG 途径通过至少部分通过再灌注期间 pHi 的延迟正常化来促进缺血后处理保护,可能通过 PKG 依赖性抑制 Na+/H+交换器。