Laser Processing Research Centre, School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester, UK.
Nat Commun. 2011;2:218. doi: 10.1038/ncomms1211.
The imaging resolution of a conventional optical microscope is limited by diffraction to ~200 nm in the visible spectrum. Efforts to overcome such limits have stimulated the development of optical nanoscopes using metamaterial superlenses, nanoscale solid immersion lenses and molecular fluorescence microscopy. These techniques either require an illuminating laser beam to resolve to 70 nm in the visible spectrum or have limited imaging resolution above 100 nm for a white-light source. Here we report a new 50-nm-resolution nanoscope that uses optically transparent microspheres (for example, SiO₂, with 2 μm<diameter<9 μm) as far-field superlenses (FSL) to overcome the white-light diffraction limit. The microsphere nanoscope operates in both transmission and reflection modes, and generates magnified virtual images with a magnification up to ×8. It may provide new opportunities to image viruses and biomolecules in real time.
传统光学显微镜的成象分辨率在可见光谱范围内受到衍射限制,约为 200nm。为了克服这些限制,人们已经开发出了使用超材料超透镜、纳米尺度固浸透镜和分子荧光显微镜的光学纳米显微镜。这些技术要么需要使用激光束才能在可见光谱中达到 70nm 的分辨率,要么在使用白光光源时的成像分辨率限制在 100nm 以上。在这里,我们报告了一种新的 50nm 分辨率纳米显微镜,它使用光学透明微球(例如,直径为 2μm<diameter<9μm 的 SiO₂)作为远场超透镜(FSL)来克服白光的衍射极限。微球纳米显微镜可在透射和反射模式下工作,并可产生放大倍数高达×8 的放大虚像。它可能为实时成像病毒和生物分子提供新的机会。