Institute for Lasers, Photonics, and Biophotonics, The State University of New York at Buffalo, Buffalo, New York 14260, USA.
Nanoscale. 2011 May;3(5):2003-8. doi: 10.1039/c0nr01018a. Epub 2011 Mar 3.
We report core/shell NaYbF(4):Tm(3+)/NaGdF(4) nanocrystals to be used as probes for bimodal near infrared to near infrared (NIR-to-NIR) upconversion photoluminescence (UCPL) and magnetic resonance (MR) imaging. The NaYbF(4):Tm(3+) nanocrystals were previously reported to produce the intense NIR-to-NIR UCPL peaked at ∼800 nm under excitation at ∼975 nm. We have found that the growth of a NaGdF(4) shell on surface of the NaYbF(4):Tm(3+) nanocrystals results in the increase in the intensity of UCPL of Tm(3+) ions by about 3 times. Unlike biexponential PL decay of NaYbF(4):Tm(3+) nanocrystals, the PL decay of NaYbF(4):Tm(3+)/NaGdF(4) core/shell nanocrystals is single exponential and of longer lifetime due to the suppression of surface quenching effects for Tm(3+) PL. The growth of a NaGdF(4) shell on surface of the NaYbF(4):Tm(3+) nanocrystals also provides high MR relaxivity from paramagnetic Gd(3+) ions contained in the shell. The T1-weighted MR signal of the (NaYbF(4):2% Tm(3+))/NaGdF(4) nanoparticles was measured to be about 2.6 mM(-1)s(-1). Due to the combined presence of efficient optical and MR imaging capabilities, nanoprobes based on NaYbF(4):Tm(3+)/NaGdF(4) fluoride nanophosphors can be considered as a promising platform for simultaneous bimodal PL and MR bioimaging.
我们报告核/壳 NaYbF(4):Tm(3+)/NaGdF(4) 纳米晶体可作为双模态近红外到近红外 (NIR-to-NIR) 上转换光致发光 (UCPL) 和磁共振 (MR) 成像的探针。先前报道的 NaYbF(4):Tm(3+) 纳米晶体在约 975nm 的激发下产生在 ∼800nm 处强度很高的 NIR-to-NIR UCPL。我们发现,在 NaYbF(4):Tm(3+) 纳米晶体表面生长 NaGdF(4) 壳导致 Tm(3+) 离子的 UCPL 强度增加约 3 倍。与 NaYbF(4):Tm(3+) 纳米晶体的双指数 PL 衰减不同,NaYbF(4):Tm(3+)/NaGdF(4) 核/壳纳米晶体的 PL 衰减是单指数的,寿命更长,因为抑制了 Tm(3+) PL 的表面猝灭效应。在 NaYbF(4):Tm(3+) 纳米晶体表面生长 NaGdF(4) 壳也为壳中包含的顺磁 Gd(3+) 离子提供了高的 MR 弛豫率。(NaYbF(4):2%Tm(3+))/NaGdF(4) 纳米颗粒的 T1 加权 MR 信号被测量为约 2.6mM(-1)s(-1)。由于同时具有高效的光学和 MR 成像能力,基于 NaYbF(4):Tm(3+)/NaGdF(4) 氟化物纳米荧光粉的纳米探针可被视为同时进行双模态 PL 和 MR 生物成像的有前途的平台。