Department of Neurology, Washington University, Saint Louis, MO 63110-1093, USA.
Neuroimage. 2011 Jun 1;56(3):1437-52. doi: 10.1016/j.neuroimage.2011.02.073. Epub 2011 Mar 3.
Advanced neuroimaging techniques have been increasingly applied to the study of preterm and term infants in an effort to further define the functional cerebral architecture of the developing brain. Despite improved understanding of the complex relationship between structure and function obtained through these investigations, significant questions remain regarding the nature, location, and timing of the maturational changes which occur during early development. Functional connectivity magnetic resonance imaging (fcMRI) utilizes spontaneous, low frequency (< 0.1 Hz), coherent fluctuations in blood oxygen level dependent (BOLD) signal to identify networks of functional cerebral connections. Due to the intrinsic characteristics of its image acquisition and analysis, fcMRI offers a novel neuroimaging approach well suited to investigation of infants. Recently, this methodology has been successfully applied to examine neonatal populations, defining normative patterns of large-scale neural network development in the maturing brain. The resting-state networks (RSNs) identified in these studies reflect the evolving cerebral structural architecture, presumably driven by varied genetic and environmental influences. Principal features of these investigations and their role in characterization of the tenets of neural network development during this critical developmental period are highlighted in this review. Despite these successes, optimal methods for fcMRI data acquisition and analysis for this population have not yet been defined. Further, appropriate schemes for interpretation and translation of fcMRI results remain unknown, a matter of increasing importance as functional neuroimaging findings are progressively applied in the clinical arena. Notwithstanding these concerns, fcMRI provides insight into the earliest forms of cerebral connectivity and therefore holds great promise for future neurodevelopmental investigations.
先进的神经影像学技术已越来越多地应用于早产儿和足月儿的研究,以进一步确定发育中大脑的功能脑结构。尽管通过这些研究对结构和功能之间的复杂关系有了更好的理解,但对于在早期发育过程中发生的成熟变化的性质、位置和时间仍存在重大问题。功能连接磁共振成像(fcMRI)利用血氧水平依赖(BOLD)信号的自发、低频(<0.1 Hz)、相干波动来识别功能脑连接的网络。由于其图像采集和分析的固有特性,fcMRI 提供了一种非常适合研究婴儿的新的神经影像学方法。最近,这种方法已成功应用于检查新生儿群体,定义了成熟大脑中大规模神经网络发育的正常模式。在这些研究中确定的静息态网络(RSN)反映了不断发展的大脑结构架构,推测是由不同的遗传和环境影响驱动的。本综述强调了这些研究的主要特征及其在描述这一关键发育时期神经网络发育原理中的作用。尽管取得了这些成功,但尚未为该人群定义 fcMRI 数据采集和分析的最佳方法。此外,对于 fcMRI 结果的解释和转化的适当方案仍然未知,随着功能神经影像学发现逐渐应用于临床领域,这一点变得越来越重要。尽管存在这些担忧,但 fcMRI 提供了对大脑连接的最早形式的深入了解,因此对未来的神经发育研究具有很大的前景。