Suppr超能文献

新采集技术及其对 fMRI 可实现分辨率的前景。

New acquisition techniques and their prospects for the achievable resolution of fMRI.

机构信息

Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia.

Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.

出版信息

Prog Neurobiol. 2021 Dec;207:101936. doi: 10.1016/j.pneurobio.2020.101936. Epub 2020 Oct 23.

Abstract

This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.

摘要

这篇综述介绍了近年来用于人脑功能磁共振成像(fMRI)的技术进展,并强调了通过提高空间分辨率和特定的磁共振对比来提高功能特异性,以揭示以前无法检测到的小尺度皮质结构的功能特性。我们讨论了磁共振硬件、先进的采集技术和各种磁共振对比机制的结合如何推动了功能神经影像学的最新进展。然而,这些先进的 fMRI 技术实践迄今为止仅应用于少数几个神经科学问题,大多数神经科学界仍在使用传统的成像技术。因此,我们讨论了功能磁共振成像技术在人类神经科学中的未来发展所面临的挑战和可能性。我们希望对功能脑成像感兴趣的读者了解当前和新颖的发展以及潜在的未来应用,即使他们没有磁共振物理或工程方面的背景。我们总结了标准 fMRI 采集方案的功能,并提供了相关文献和综合综述的链接,同时介绍了更近期的发展。

相似文献

1
New acquisition techniques and their prospects for the achievable resolution of fMRI.
Prog Neurobiol. 2021 Dec;207:101936. doi: 10.1016/j.pneurobio.2020.101936. Epub 2020 Oct 23.
2
Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications.
Neuroimage. 2018 Jan 1;164:131-143. doi: 10.1016/j.neuroimage.2016.11.039. Epub 2016 Nov 18.
3
Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field.
Neuroimage. 2018 Mar;168:101-118. doi: 10.1016/j.neuroimage.2017.04.006. Epub 2017 Apr 6.
4
Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.
Neuroimage. 2018 Mar;168:279-295. doi: 10.1016/j.neuroimage.2017.02.063. Epub 2017 Feb 22.
5
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR.
Neuroimage. 2019 Aug 15;197:742-760. doi: 10.1016/j.neuroimage.2017.07.041. Epub 2017 Jul 20.
6
Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges.
Neuroimage. 2018 Sep;178:769-779. doi: 10.1016/j.neuroimage.2018.06.025. Epub 2018 Jun 8.
7
Concurrent CBF and BOLD FMRI with dual-echo spiral simultaneous multi-slice acquisitions at 7T.
Neuroimage. 2022 Feb 15;247:118820. doi: 10.1016/j.neuroimage.2021.118820. Epub 2021 Dec 14.
8
Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging.
Philos Trans R Soc Lond B Biol Sci. 2021 Jan 4;376(1815):20200040. doi: 10.1098/rstb.2020.0040. Epub 2020 Nov 16.
9
Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T.
Neuroimage. 2021 Nov 1;241:118435. doi: 10.1016/j.neuroimage.2021.118435. Epub 2021 Jul 27.
10
Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
Neuroimage. 2018 Jan 1;164:67-99. doi: 10.1016/j.neuroimage.2017.04.011. Epub 2017 Apr 28.

引用本文的文献

1
Combining the benefits of 3D acquisitions and spiral readouts for VASO fMRI at UHF.
Imaging Neurosci (Camb). 2024 Oct 7;2. doi: 10.1162/imag_a_00308. eCollection 2024.
2
Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset.
Apert Neuro. 2023 Sep;3. doi: 10.52294/001c.87961. Epub 2023 Sep 15.
3
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
5
Evaluating the capabilities and challenges of layer-fMRI VASO at 3T.
Apert Neuro. 2023;3. doi: 10.52294/001c.85117. Epub 2023 Aug 9.
6
Impact of Spinal Manipulative Therapy on Brain Function and Pain Alleviation in Lumbar Disc Herniation: A Resting-State fMRI Study.
Chin J Integr Med. 2025 Feb;31(2):108-117. doi: 10.1007/s11655-024-4205-7. Epub 2024 Dec 21.
7
Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data.
Front Comput Neurosci. 2024 Oct 15;18:1478193. doi: 10.3389/fncom.2024.1478193. eCollection 2024.
10
High-resolution motion- and phase-corrected functional MRI at 7 T using shuttered multishot echo-planar imaging.
Magn Reson Med. 2023 Jun;89(6):2227-2241. doi: 10.1002/mrm.29608. Epub 2023 Jan 28.

本文引用的文献

1
Advances in spiral fMRI: A high-resolution study with single-shot acquisition.
Neuroimage. 2022 Feb 1;246:118738. doi: 10.1016/j.neuroimage.2021.118738. Epub 2021 Nov 17.
2
Feasibility of spiral fMRI based on an LTI gradient model.
Neuroimage. 2021 Dec 15;245:118674. doi: 10.1016/j.neuroimage.2021.118674. Epub 2021 Oct 27.
3
Sub-millimetre resolution laminar fMRI using Arterial Spin Labelling in humans at 7 T.
PLoS One. 2021 Apr 26;16(4):e0250504. doi: 10.1371/journal.pone.0250504. eCollection 2021.
4
Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI.
Magn Reson Med. 2021 Mar;85(3):1540-1551. doi: 10.1002/mrm.28486. Epub 2020 Sep 16.
6
Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T.
Magn Reson Med. 2020 Dec;84(6):3128-3145. doi: 10.1002/mrm.28347. Epub 2020 Jun 18.
7
Layer-dependent functional connectivity methods.
Prog Neurobiol. 2021 Dec;207:101835. doi: 10.1016/j.pneurobio.2020.101835. Epub 2020 Jun 5.
8
Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge.
Magn Reson Med. 2020 Dec;84(6):3054-3070. doi: 10.1002/mrm.28338. Epub 2020 Jun 7.
9
Robust functional mapping of layer-selective responses in human lateral geniculate nucleus with high-resolution 7T fMRI.
Proc Biol Sci. 2020 Apr 29;287(1925):20200245. doi: 10.1098/rspb.2020.0245. Epub 2020 Apr 15.
10
Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex.
Curr Biol. 2020 May 4;30(9):1721-1725.e3. doi: 10.1016/j.cub.2020.02.046. Epub 2020 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验