Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia.
Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
Prog Neurobiol. 2021 Dec;207:101936. doi: 10.1016/j.pneurobio.2020.101936. Epub 2020 Oct 23.
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
这篇综述介绍了近年来用于人脑功能磁共振成像(fMRI)的技术进展,并强调了通过提高空间分辨率和特定的磁共振对比来提高功能特异性,以揭示以前无法检测到的小尺度皮质结构的功能特性。我们讨论了磁共振硬件、先进的采集技术和各种磁共振对比机制的结合如何推动了功能神经影像学的最新进展。然而,这些先进的 fMRI 技术实践迄今为止仅应用于少数几个神经科学问题,大多数神经科学界仍在使用传统的成像技术。因此,我们讨论了功能磁共振成像技术在人类神经科学中的未来发展所面临的挑战和可能性。我们希望对功能脑成像感兴趣的读者了解当前和新颖的发展以及潜在的未来应用,即使他们没有磁共振物理或工程方面的背景。我们总结了标准 fMRI 采集方案的功能,并提供了相关文献和综合综述的链接,同时介绍了更近期的发展。