Suppr超能文献

人类与 HIV 蛋白间物理相互作用的有监督学习和预测。

Supervised learning and prediction of physical interactions between human and HIV proteins.

机构信息

Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St, Blacksburg, VA 24061, USA.

出版信息

Infect Genet Evol. 2011 Jul;11(5):917-23. doi: 10.1016/j.meegid.2011.02.022. Epub 2011 Mar 5.

Abstract

BACKGROUND

Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions.

METHODOLOGY

We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell.

SIGNIFICANCE

Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.

摘要

背景

传染病每年导致数百万人死亡。病原体和宿主蛋白之间的物理相互作用通常是此类感染的基础。虽然已经提出了许多预测蛋白质-蛋白质相互作用(PPIs)的方法,但它们主要集中在种内蛋白质-蛋白质相互作用上。

方法

我们提出了一种使用监督学习方法预测宿主和病原体蛋白之间物理相互作用的应用,以人类 - 艾滋病毒系统为例。我们使用带有线性核的支持向量机,探索了使用包括结构域谱、蛋白质序列 k- mers 和人类蛋白质在人类 PPI 网络中的特性在内的许多特征。当我们结合使用这三种特征时,我们获得了最佳的交叉验证性能。在精度值为 70%的情况下,我们获得了大于 40%的召回值,具体取决于训练过程中使用的正例和负例的比例。我们使用使用这些特征训练的分类器来预测人类和 HIV 蛋白之间的新 PPI。我们将讨论重点放在那些涉及到已知对 HIV 复制和传播至关重要的人类蛋白的预测相互作用上。文献中支持的预测相互作用的例子包括那些病毒与宿主膜结合以及随后宿主细胞入侵所必需的相互作用。

意义

与种内 PPIs 不同,宿主 - 病原体 PPIs 尚未在大规模上进行实验检测,但它们可能在发病机制和疾病结果中发挥重要作用。能够稳健且准确地预测宿主 - 病原体 PPIs 的计算方法有望指导未来的实验,并深入了解潜在的发病机制。

相似文献

1
Supervised learning and prediction of physical interactions between human and HIV proteins.
Infect Genet Evol. 2011 Jul;11(5):917-23. doi: 10.1016/j.meegid.2011.02.022. Epub 2011 Mar 5.
2
Issues in performance evaluation for host-pathogen protein interaction prediction.
J Bioinform Comput Biol. 2016 Jun;14(3):1650011. doi: 10.1142/S0219720016500116. Epub 2016 Jan 14.
3
Purification and characterization of HIV-human protein complexes.
Methods. 2011 Jan;53(1):13-9. doi: 10.1016/j.ymeth.2010.08.007. Epub 2010 Aug 12.
4
Prediction of interactions between viral and host proteins using supervised machine learning methods.
PLoS One. 2014 Nov 6;9(11):e112034. doi: 10.1371/journal.pone.0112034. eCollection 2014.
6
Training host-pathogen protein-protein interaction predictors.
J Bioinform Comput Biol. 2018 Aug;16(4):1850014. doi: 10.1142/S0219720018500142. Epub 2018 May 29.
7
Network-based prediction and analysis of HIV dependency factors.
PLoS Comput Biol. 2011 Sep;7(9):e1002164. doi: 10.1371/journal.pcbi.1002164. Epub 2011 Sep 22.
8
Targeting Virus-host Protein Interactions: Feature Extraction and Machine Learning Approaches.
Curr Drug Metab. 2019;20(3):177-184. doi: 10.2174/1389200219666180829121038.
9
Computational prediction of host-pathogen protein-protein interactions.
Bioinformatics. 2007 Jul 1;23(13):i159-66. doi: 10.1093/bioinformatics/btm208.
10
Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins.
Bioinformatics. 2010 Sep 15;26(18):i645-52. doi: 10.1093/bioinformatics/btq394.

引用本文的文献

1
Bioinformatics approaches for unveiling virus-host interactions.
Comput Struct Biotechnol J. 2023;21:1774-1784. doi: 10.1016/j.csbj.2023.02.044. Epub 2023 Feb 27.
2
Combinatorial interactions between viral proteins expand the potential functional landscape of the tomato yellow leaf curl virus proteome.
PLoS Pathog. 2022 Oct 18;18(10):e1010909. doi: 10.1371/journal.ppat.1010909. eCollection 2022 Oct.
3
Computational Methods and Deep Learning for Elucidating Protein Interaction Networks.
Methods Mol Biol. 2023;2553:285-323. doi: 10.1007/978-1-0716-2617-7_15.
4
New feature extraction from phylogenetic profiles improved the performance of pathogen-host interactions.
Front Cell Infect Microbiol. 2022 Aug 2;12:931072. doi: 10.3389/fcimb.2022.931072. eCollection 2022.
5
Evolutionary Relationships Between Dysregulated Genes in Oral Squamous Cell Carcinoma and Oral Microbiota.
Front Cell Infect Microbiol. 2022 Jul 13;12:931011. doi: 10.3389/fcimb.2022.931011. eCollection 2022.
6
A virus-target host proteins recognition method based on integrated complexes data and seed extension.
BMC Bioinformatics. 2022 Jun 28;23(1):256. doi: 10.1186/s12859-022-04792-x.
7
Bioinformatics-Based Approaches to Study Virus-Host Interactions During SARS-CoV-2 Infection.
Methods Mol Biol. 2022;2452:197-212. doi: 10.1007/978-1-0716-2111-0_13.
8
Deep Learning-Powered Prediction of Human-Virus Protein-Protein Interactions.
Front Microbiol. 2022 Apr 15;13:842976. doi: 10.3389/fmicb.2022.842976. eCollection 2022.
9
In silico prediction of HIV-1-host molecular interactions and their directionality.
PLoS Comput Biol. 2022 Feb 8;18(2):e1009720. doi: 10.1371/journal.pcbi.1009720. eCollection 2022 Feb.
10
Computational modeling of human-nCoV protein-protein interaction network.
Methods. 2022 Jul;203:488-497. doi: 10.1016/j.ymeth.2021.12.003. Epub 2021 Dec 10.

本文引用的文献

1
Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins.
Bioinformatics. 2010 Sep 15;26(18):i645-52. doi: 10.1093/bioinformatics/btq394.
2
Ortholog-based protein-protein interaction prediction and its application to inter-species interactions.
BMC Bioinformatics. 2008 Dec 12;9 Suppl 12(Suppl 12):S11. doi: 10.1186/1471-2105-9-S12-S11.
4
Human immunodeficiency virus type 1, human protein interaction database at NCBI.
Nucleic Acids Res. 2009 Jan;37(Database issue):D417-22. doi: 10.1093/nar/gkn708. Epub 2008 Oct 15.
5
Estimating the size of the human interactome.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6959-64. doi: 10.1073/pnas.0708078105. Epub 2008 May 12.
6
The landscape of human proteins interacting with viruses and other pathogens.
PLoS Pathog. 2008 Feb 8;4(2):e32. doi: 10.1371/journal.ppat.0040032.
7
Apoptosis and HIV infection: about molecules and genes.
Curr Pharm Des. 2008;14(3):237-44. doi: 10.2174/138161208783413293.
8
Identification of host proteins required for HIV infection through a functional genomic screen.
Science. 2008 Feb 15;319(5865):921-6. doi: 10.1126/science.1152725. Epub 2008 Jan 10.
9
Host pathogen protein interactions predicted by comparative modeling.
Protein Sci. 2007 Dec;16(12):2585-96. doi: 10.1110/ps.073228407. Epub 2007 Oct 26.
10
Computational prediction of host-pathogen protein-protein interactions.
Bioinformatics. 2007 Jul 1;23(13):i159-66. doi: 10.1093/bioinformatics/btm208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验