Suppr超能文献

叉袋法和自举法检验组成向量树。

Jackknife and bootstrap tests of the composition vector trees.

机构信息

T-Life Research Center & Department of Physics, Fudan University, Shanghai 200433, China.

出版信息

Genomics Proteomics Bioinformatics. 2010 Dec;8(4):262-7. doi: 10.1016/S1672-0229(10)60028-9.

Abstract

Composition vector trees (CVTrees) are inferred from whole-genome data by an alignment-free and parameter-free method. The agreement of these trees with the corresponding taxonomy provides an objective justification of the inferred phylogeny In this work, we show the stability and self-consistency of CVTrees by performing bootstrap and jackknife re-sampling tests adapted to this alignment-free approach. Our ultimate goal is to advocate the viewpoint that time-consuming statistical re-sampling tests can be avoided at all in using this alignment-free approach. Agreement with taxonomy should be taken as a major criterion to estimate prokaryotic phylogenetic trees.

摘要

组成向量树 (CVTrees) 是通过一种无比对和无参数的方法从全基因组数据中推断出来的。这些树与相应分类学的一致性为推断的系统发育提供了客观的依据。在这项工作中,我们通过执行适应这种无比对方法的自举和刀切重采样测试,展示了 CVTrees 的稳定性和自洽性。我们的最终目标是提倡这样一种观点,即在使用这种无比对方法时,可以完全避免耗时的统计重采样测试。与分类学的一致性应作为估计原核生物系统发育树的主要标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验