Suppr超能文献

具有高效计算的贝叶斯张量对张量回归

Bayesian tensor-on-tensor regression with efficient computation.

作者信息

Wang Kunbo, Xu Yanxun

机构信息

3400 N. Charles Street, Baltimore, MD 21218.

出版信息

Stat Interface. 2024;17(2):199-217. doi: 10.4310/23-sii786. Epub 2024 Feb 1.

Abstract

We propose a Bayesian tensor-on-tensor regression approach to predict a multidimensional array (tensor) of arbitrary dimensions from another tensor of arbitrary dimensions, building upon the Tucker decomposition of the regression coefficient tensor. Traditional tensor regression methods making use of the Tucker decomposition either assume the dimension of the core tensor to be known or estimate it via cross-validation or some model selection criteria. However, no existing method can simultaneously estimate the model dimension (the dimension of the core tensor) and other model parameters. To fill this gap, we develop an efficient Markov Chain Monte Carlo (MCMC) algorithm to estimate both the model dimension and parameters for posterior inference. Besides the MCMC sampler, we also develop an ultra-fast optimization-based computing algorithm wherein the maximum a posteriori estimators for parameters are computed, and the model dimension is optimized via a simulated annealing algorithm. The proposed Bayesian framework provides a natural way for uncertainty quantification. Through extensive simulation studies, we evaluate the proposed Bayesian tensor-on-tensor regression model and show its superior performance compared to alternative methods. We also demonstrate its practical effectiveness by applying it to two real-world datasets, including facial imaging data and 3D motion data.

摘要

我们提出了一种贝叶斯张量对张量回归方法,用于从任意维度的另一个张量预测任意维度的多维数组(张量),该方法基于回归系数张量的塔克分解。利用塔克分解的传统张量回归方法要么假设核心张量的维度已知,要么通过交叉验证或一些模型选择标准来估计它。然而,现有的方法都无法同时估计模型维度(核心张量的维度)和其他模型参数。为了填补这一空白,我们开发了一种高效的马尔可夫链蒙特卡罗(MCMC)算法,用于估计模型维度和参数以进行后验推断。除了MCMC采样器,我们还开发了一种基于超快速优化的计算算法,其中计算参数的最大后验估计器,并通过模拟退火算法优化模型维度。所提出的贝叶斯框架为不确定性量化提供了一种自然的方法。通过广泛的模拟研究,我们评估了所提出的贝叶斯张量对张量回归模型,并展示了其相对于其他方法的优越性能。我们还通过将其应用于两个真实世界的数据集,包括面部成像数据和3D运动数据,证明了其实际有效性。

相似文献

1
6
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
8
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.
10

本文引用的文献

1
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
4
Tensor-on-tensor regression.张量对张量回归
J Comput Graph Stat. 2018;27(3):638-647. doi: 10.1080/10618600.2017.1401544. Epub 2018 Jun 6.
5
MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.用于纵向关系数据的多线性张量回归
Ann Appl Stat. 2015 Sep;9(3):1169-1193. doi: 10.1214/15-AOAS839. Epub 2015 Nov 2.
6
Bayesian Models for fMRI Data Analysis.用于功能磁共振成像数据分析的贝叶斯模型。
Wiley Interdiscip Rev Comput Stat. 2015 Jan-Feb;7(1):21-41. doi: 10.1002/wics.1339.
9
Tensor learning for regression.张量回归学习。
IEEE Trans Image Process. 2012 Feb;21(2):816-27. doi: 10.1109/TIP.2011.2165291. Epub 2011 Aug 18.
10
Describable Visual Attributes for Face Verification and Image Search.可描述的人脸验证和图像搜索视觉属性。
IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):1962-77. doi: 10.1109/TPAMI.2011.48. Epub 2011 Mar 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验