Suppr超能文献

女性乳腺癌患者呼吸中的挥发性生物标志物。

Volatile biomarkers in the breath of women with breast cancer.

机构信息

Menssana Research Inc, Fort Lee, NJ 07024-6510, USA.

出版信息

J Breath Res. 2010 Jun;4(2):026003. doi: 10.1088/1752-7155/4/2/026003. Epub 2010 Mar 2.

Abstract

We sought biomarkers of breast cancer in the breath because the disease is accompanied by increased oxidative stress and induction of cytochrome P450 enzymes, both of which generate volatile organic compounds (VOCs) that are excreted in breath. We analyzed breath VOCs in 54 women with biopsy-proven breast cancer and 204 cancer-free controls, using gas chromatography/mass spectroscopy. Chromatograms were converted into a series of data points by segmenting them into 900 time slices (8 s duration, 4 s overlap) and determining their alveolar gradients (abundance in breath minus abundance in ambient room air). Monte Carlo simulations identified time slices with better than random accuracy as biomarkers of breast cancer by excluding random identifiers. Patients were randomly allocated to training sets or test sets in 2:1 data splits. In the training sets, time slices were ranked according their C-statistic values (area under curve of receiver operating characteristic), and the top ten time slices were combined in multivariate algorithms that were cross-validated in the test sets. Monte Carlo simulations identified an excess of correct over random time slices, consistent with non-random biomarkers of breast cancer in the breath. The outcomes of ten random data splits (mean (standard deviation)) in the training sets were sensitivity = 78.5% (6.14), specificity = 88.3% (5.47), C-statistic = 0.89 (0.03) and in the test sets, sensitivity = 75.3% (7.22), specificity = 84.8 (9.97), C-statistic = 0.83 (0.06). A breath test identified women with breast cancer, employing a combination of volatile biomarkers in a multivariate algorithm.

摘要

我们试图从呼吸中寻找乳腺癌的生物标志物,因为这种疾病伴随着氧化应激的增加和细胞色素 P450 酶的诱导,这两者都会产生挥发性有机化合物(VOCs),这些化合物会从呼吸中排出。我们使用气相色谱/质谱法分析了 54 名经活检证实患有乳腺癌的女性和 204 名无癌症对照者的呼吸 VOCs。通过将色谱图分成 900 个时间片(8 秒持续时间,4 秒重叠)并确定它们的肺泡梯度(呼吸中的丰度减去环境室空气中的丰度),将色谱图转换为一系列数据点。蒙特卡罗模拟通过排除随机标识符,确定了具有优于随机精度的时间片作为乳腺癌的生物标志物。患者以 2:1 的数据分割随机分配到训练集或测试集中。在训练集中,根据其 C 统计量值(接受者操作特征曲线下的面积)对时间片进行排名,并将前 10 个时间片组合成在测试集中进行交叉验证的多元算法。蒙特卡罗模拟确定了正确时间片超过随机时间片的情况,这与呼吸中乳腺癌的非随机生物标志物一致。在训练集中,10 次随机数据分割(平均值(标准差))的结果为:敏感性=78.5%(6.14),特异性=88.3%(5.47),C 统计量=0.89(0.03),在测试集中,敏感性=75.3%(7.22),特异性=84.8%(9.97),C 统计量=0.83(0.06)。采用多元算法结合挥发性生物标志物的呼吸测试可识别患有乳腺癌的女性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验