University of Washington, Department of Bioengineering, William H. Foege Building N530M, Seattle, WA 98195, USA.
Phys Chem Chem Phys. 2011 Jun 7;13(21):10028-35. doi: 10.1039/c0cp02434a. Epub 2011 Mar 9.
Engineering plasmonic nanostructures that simultaneously achieve high colloidal stability, high photothermal stability, low non-specific binding to biological specimens, and low toxicity is of significant interest to research in bionanotechnology. Using gold nanorods, we solved this problem by encapsulating them with a multilayer structure, silica, hydrophobic ligands, and amphiphilic-polymers. In comparison with nanorods covered with the conventional surface chemistries, such as surfactants, polyelectrolytes, thiolated polymers, and silica shells alone, the new nanorods remain single in various solutions and show remarkable stability against laser irradiation. We further demonstrated specific targeting and effective treatment of prostate tumor cells using nanorod-aptamer bioconjugates. This exquisitely formulated nanoencapsulation technology could potentially help stabilize other plasmonic nanostructures that are not in the most thermodynamically or chemically stable states, and should open exciting opportunities in nanotechnology-based imaging and therapeutics.
工程等离子体纳米结构,同时实现高胶体稳定性、高光热稳定性、低非特异性结合生物标本和低毒性,这对生物纳米技术的研究具有重要意义。我们使用金纳米棒,通过用多层结构、二氧化硅、疏水性配体和两亲聚合物来封装它们,解决了这个问题。与用传统表面化学物质(如表面活性剂、聚电解质、巯基聚合物和单独的二氧化硅壳)覆盖的纳米棒相比,新的纳米棒在各种溶液中保持单分散状态,并对激光照射表现出显著的稳定性。我们进一步使用纳米棒-适体生物缀合物证明了对前列腺肿瘤细胞的特异性靶向和有效治疗。这种精心设计的纳米封装技术有可能帮助稳定其他不是处于最热力学或化学稳定状态的等离子体纳米结构,并且应该为基于纳米技术的成像和治疗学开辟令人兴奋的机会。