Suppr超能文献

使用离体和体内基因表达特征预测放射治疗患者的体内辐射剂量状况。

Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures.

机构信息

Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032, USA.

出版信息

Radiat Res. 2011 Mar;175(3):257-65. doi: 10.1667/RR2420.1. Epub 2011 Jan 10.

Abstract

After a large-scale nuclear accident or an attack with an improvised nuclear device, rapid biodosimetry would be needed for triage. As a possible means to address this need, we previously defined a gene expression signature in human peripheral white blood cells irradiated ex vivo that predicts the level of radiation exposure with high accuracy. We now demonstrate this principle in vivo using blood from patients receiving total-body irradiation (TBI). Whole genome microarray analysis has identified genes responding significantly to in vivo radiation exposure in peripheral blood. A 3-nearest neighbor classifier built from the TBI patient data correctly predicted samples as exposed to 0, 1.25 or 3.75 Gy with 94% accuracy (P < 0.001) even when samples from healthy donor controls were included. The same samples were classified with 98% accuracy using a signature previously defined from ex vivo irradiation data. The samples could also be classified as exposed or not exposed with 100% accuracy. The demonstration that ex vivo irradiation is an appropriate model that can provide meaningful prediction of in vivo exposure levels, and that the signatures are robust across diverse disease states and independent sample sets, is an important advance in the application of gene expression for biodosimetry.

摘要

在发生大规模核事故或遭受简易核装置袭击后,需要快速进行生物剂量测定以便进行分类处理。作为满足这一需求的一种可能手段,我们之前在体外照射的人类外周血白细胞中定义了一个基因表达特征,该特征可高度准确地预测辐射暴露水平。现在,我们使用接受全身照射 (TBI) 的患者的血液来验证这一原理。全基因组微阵列分析已经确定了外周血中对体内辐射暴露反应显著的基因。使用来自 TBI 患者数据构建的 3 最近邻分类器可以正确地将样本预测为暴露于 0、1.25 或 3.75 Gy,准确率为 94%(P < 0.001),即使包括健康供体对照样本也是如此。使用之前从体外照射数据定义的特征,可以将相同的样本以 98%的准确率进行分类。这些样本也可以 100%准确地分类为暴露或未暴露。该研究证明,体外照射是一种合适的模型,可以对体内暴露水平进行有意义的预测,并且该特征在不同的疾病状态和独立的样本集中都是稳健的,这是将基因表达应用于生物剂量测定的重要进展。

相似文献

2
Development of gene expression signatures for practical radiation biodosimetry.
Int J Radiat Oncol Biol Phys. 2008 Jul 15;71(4):1236-1244. doi: 10.1016/j.ijrobp.2008.03.043.
5
A translatable predictor of human radiation exposure.
PLoS One. 2014 Sep 25;9(9):e107897. doi: 10.1371/journal.pone.0107897. eCollection 2014.
6
Gene expression signatures of radiation exposure in peripheral white blood cells of smokers and non-smokers.
Int J Radiat Biol. 2011 Aug;87(8):791-801. doi: 10.3109/09553002.2011.568574.
7
Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.
PLoS One. 2010 Jul 12;5(7):e11535. doi: 10.1371/journal.pone.0011535.
8
Calibration curve for radiation dose estimation using FDXR gene expression biodosimetry - premises and pitfalls.
Int J Radiat Biol. 2024;100(8):1202-1212. doi: 10.1080/09553002.2024.2373751. Epub 2024 Jul 2.
10
Radiation dose-rate effects on gene expression for human biodosimetry.
BMC Med Genomics. 2015 May 12;8:22. doi: 10.1186/s12920-015-0097-x.

引用本文的文献

1
Intracellular lymphocyte protein biomarkers for early radiological triage in the human population.
PLoS One. 2025 Sep 9;20(9):e0331230. doi: 10.1371/journal.pone.0331230. eCollection 2025.
4
Candidate biomarkers and persistent transcriptional responses after low and high dose ionizing radiation at high dose rate.
Int J Radiat Biol. 2023;99(12):1853-1864. doi: 10.1080/09553002.2023.2241897. Epub 2023 Aug 7.
5
The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo.
Radiat Environ Biophys. 2023 Aug;62(3):371-393. doi: 10.1007/s00411-023-01033-4. Epub 2023 Jun 19.
6
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy.
Cancers (Basel). 2022 May 26;14(11):2649. doi: 10.3390/cancers14112649.
8
The p53 Protein Family in the Response of Tumor Cells to Ionizing Radiation: Problem Development.
Acta Naturae. 2021 Jul-Sep;13(3):65-76. doi: 10.32607/actanaturae.11247.
9
Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021.
Int J Radiat Biol. 2022;98(5):843-854. doi: 10.1080/09553002.2021.1987571. Epub 2021 Oct 18.
10
The transcriptomic revolution and radiation biology.
Int J Radiat Biol. 2022;98(3):428-438. doi: 10.1080/09553002.2021.1987562. Epub 2021 Oct 11.

本文引用的文献

1
Deciphering normal blood gene expression variation--The NOWAC postgenome study.
PLoS Genet. 2010 Mar 12;6(3):e1000873. doi: 10.1371/journal.pgen.1000873.
2
Dosimetry based on EPR spectral analysis of fingernail clippings.
Health Phys. 2010 Feb;98(2):309-17. doi: 10.1097/HP.0b013e3181b27502.
3
Quickscan dicentric chromosome analysis for radiation biodosimetry.
Health Phys. 2010 Feb;98(2):276-81. doi: 10.1097/HP.0b013e3181aba9c7.
4
Triage dose assessment for partial-body exposure: dicentric analysis.
Health Phys. 2010 Feb;98(2):244-51. doi: 10.1097/01.HP.0000348020.14969.4.
5
The RABIT: a rapid automated biodosimetry tool for radiological triage.
Health Phys. 2010 Feb;98(2):209-17. doi: 10.1097/HP.0b013e3181ab3cb6.
6
The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.
Health Phys. 2010 Feb;98(2):186-95. doi: 10.1097/HP.0b013e3181b17cbd.
7
Biodosimetry on small blood volume using gene expression assay.
Health Phys. 2010 Feb;98(2):179-85. doi: 10.1097/01.HP.0000346706.44253.5c.
9
A critical assessment of biodosimetry methods for large-scale incidents.
Health Phys. 2010 Feb;98(2):95-108. doi: 10.1097/HP.0b013e3181b8cffd.
10
The role of mass spectrometry-based metabolomics in medical countermeasures against radiation.
Mass Spectrom Rev. 2010 May-Jun;29(3):503-21. doi: 10.1002/mas.20272.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验