Suppr超能文献

电极化和轨道磁化:现代理论。

Electrical polarization and orbital magnetization: the modern theories.

机构信息

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy.

出版信息

J Phys Condens Matter. 2010 Mar 31;22(12):123201. doi: 10.1088/0953-8984/22/12/123201. Epub 2010 Mar 11.

Abstract

Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M--phenomenologically known as bulk properties--apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out analogies and differences. Both theories are deeply rooted in geometrical concepts, elucidated in this work. The main formulae for crystalline systems express P and M in terms of Brillouin-zone integrals, discretized for numerical implementation. I also provide the corresponding formulae for disordered systems in a single k-point supercell framework. In the case of P the single-point formula has been widely used in the Car-Parrinello community to evaluate IR spectra.

摘要

宏观极化 P 和磁化强度 M 是凝聚态介质任何唯象描述中最基本的概念。它们是直观上表示单位体积偶极子的强度矢量量。但是,多年来,P 和 M 的轨道项甚至连一个精确的微观定义都没有,这对量子力学计算提出了严峻的挑战。如果从有限样本的角度来推理,由于在偶极子定义中存在无限大的位置算子,电(磁)偶极子会受到样本边界处电荷(电流)的广泛影响。因此,P 和 M 的轨道项——从唯象角度来看是体性质——显然表现为表面性质;只有自旋磁化是没有问题的。自 20 世纪 90 年代初以来,该领域发生了真正的革命。与普遍存在的错误信念相反,P 与极化晶体的周期性电荷分布无关:前者本质上是电子波函数相位的属性,而后者是其模的属性。类似地,M 的轨道项与磁化晶体中的周期性电流分布无关。基于 Berry 相的现代极化理论始于 20 世纪 90 年代初,现在已在大多数第一性原理电子结构代码中得到实现。类似的轨道磁化理论始于 2005 年,目前仍在进行中。在电的情况下,计算涉及几种材料中的各种现象(铁电、压电和晶格动力学),并与实验非常吻合;它们为铁电和压电材料的行为提供了透彻的理解。在磁的情况下,在撰写本文时(2010 年)才出现了第一批计算结果。在这里,我在密度泛函理论(DFT)框架下以统一的方式回顾这两种理论,指出它们的相似之处和差异。这两种理论都深深地植根于几何概念,在本文中得到了阐明。晶体系统的主要公式以布里渊区积分的形式表示 P 和 M,这些积分已离散化以进行数值实现。我还在单 k 点超胞框架下提供了无序系统的相应公式。对于 P,单点公式已被 Car-Parrinello 社区广泛用于评估红外光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验