RIKEN Center for Emergent Matter Science (CEMS), 351-0198 Wako, Japan;
RIKEN Center for Emergent Matter Science (CEMS), 351-0198 Wako, Japan.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1929-1933. doi: 10.1073/pnas.1802427116. Epub 2019 Jan 22.
Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.
在固体中,光激发会导致电子/空穴在不同的能带之间跃迁。如果固体缺乏反转对称性,这些电子跃迁由于构成电子能带的几何相位(贝里连接)而支持自发光电流。这种光电流,称为位移电流,预计会在主光激发过程的时间尺度上出现。我们通过探测发射的太赫兹电磁波,观察到在典型铁电半导体碘化亚锑(SbSI)中位移电流的超快演化。通过在能带隙内扫掠激发光子能量,作为太赫兹发射源的超快电子动力学突然改变其性质,反映了贝里连接对带间光跃迁的贡献。位移激发携带净电荷流,并在亚皮秒时间尺度上紧随其后的是电子云的摆动。借助第一性原理计算来理解位移电流的这些重要特征,将为其在超快传感器和太阳能电池中的应用铺平道路。