Suppr超能文献

因果条件推理的心理表象:心理模型还是因果模型。

The mental representation of causal conditional reasoning: mental models or causal models.

机构信息

Department of Psychology, Anglia Ruskin University, Cambridge, UK.

出版信息

Cognition. 2011 Jun;119(3):403-18. doi: 10.1016/j.cognition.2011.02.005. Epub 2011 Mar 9.

Abstract

In this paper, two experiments are reported investigating the nature of the cognitive representations underlying causal conditional reasoning performance. The predictions of causal and logical interpretations of the conditional diverge sharply when inferences involving pairs of conditionals-such as if P(1)then Q and if P(2)then Q-are considered. From a causal perspective, the causal direction of these conditionals is critical: are the P(i)causes of Q; or symptoms caused byQ. The rich variety of inference patterns can naturally be modelled by Bayesian networks. A pair of causal conditionals where Q is an effect corresponds to a "collider" structure where the two causes (P(i)) converge on a common effect. In contrast, a pair of causal conditionals where Q is a cause corresponds to a network where two effects (P(i)) diverge from a common cause. Very different predictions are made by fully explicit or initial mental models interpretations. These predictions were tested in two experiments, each of which yielded data most consistent with causal model theory, rather than with mental models.

摘要

本文报告了两项实验,旨在探究因果条件推理表现背后的认知表征本质。当涉及涉及双条件推理时——例如,如果 P(1),那么 Q 和如果 P(2),那么 Q——因果和逻辑解释的预测会有很大的分歧。从因果的角度来看,这些条件的因果方向至关重要:P(i)是 Q 的原因;还是由 Q 引起的症状。贝叶斯网络可以自然地对丰富多样的推理模式进行建模。一对因果条件,其中 Q 是一种效应,对应于“碰撞器”结构,其中两个原因 (P(i)) 汇聚到一个共同的效应上。相比之下,一对因果条件,其中 Q 是一个原因,对应于一个网络,其中两个效应 (P(i)) 从一个共同的原因发散。完全明确或初始心理模型解释会做出截然不同的预测。这些预测在两项实验中进行了测试,每项实验的数据都最符合因果模型理论,而不是心理模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验