Suppr超能文献

贝叶斯网络与婴儿:婴儿发展中的统计推理能力及其对因果知识的表征

Bayes nets and babies: infants' developing statistical reasoning abilities and their representation of causal knowledge.

作者信息

Sobel David M, Kirkham Natasha Z

机构信息

Department of Cognitive and Linguistic Sciences, Brown University, RI 02912, USA.

出版信息

Dev Sci. 2007 May;10(3):298-306. doi: 10.1111/j.1467-7687.2007.00589.x.

Abstract

A fundamental assumption of the causal graphical model framework is the Markov assumption, which posits that learners can discriminate between two events that are dependent because of a direct causal relation between them and two events that are independent conditional on the value of another event(s). Sobel and Kirkham (2006) demonstrated that 8-month-old infants registered conditional independence information among a sequence of events; infants responded according to the Markov assumption in such a way that was inconsistent with models that rely on simple calculations of associative strength. The present experiment extends these findings to younger infants, and demonstrates that such responses potentially develop during the second half of the first year of life. These data are discussed in terms of a developmental trajectory between associative mechanisms and causal graphical models as representations of infants' causal and statistical learning.

摘要

因果图模型框架的一个基本假设是马尔可夫假设,该假设认为学习者能够区分由于直接因果关系而相互依赖的两个事件,以及在另一个事件的值给定条件下相互独立的两个事件。索贝尔和柯克汉姆(2006年)证明,8个月大的婴儿能够记录一系列事件中的条件独立性信息;婴儿根据马尔可夫假设做出反应,其方式与依赖关联强度简单计算的模型不一致。本实验将这些发现扩展到更小的婴儿,并证明这种反应可能在生命的第一年下半年发展起来。这些数据将根据关联机制和因果图模型之间的发展轨迹进行讨论,它们是婴儿因果学习和统计学习的表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验