Suppr超能文献

相似文献

1
Extracting timing and status descriptors for colonoscopy testing from electronic medical records.
J Am Med Inform Assoc. 2010 Jul-Aug;17(4):383-8. doi: 10.1136/jamia.2010.004804.
3
Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
Med Decis Making. 2012 Jan-Feb;32(1):188-97. doi: 10.1177/0272989X11400418. Epub 2011 Mar 10.
4
Extracting important information from Chinese Operation Notes with natural language processing methods.
J Biomed Inform. 2014 Apr;48:130-6. doi: 10.1016/j.jbi.2013.12.017. Epub 2014 Jan 31.
5
Development of an Automated Algorithm to Generate Guideline-based Recommendations for Follow-up Colonoscopy.
Clin Gastroenterol Hepatol. 2020 Aug;18(9):2038-2045.e1. doi: 10.1016/j.cgh.2019.10.013. Epub 2019 Oct 14.
6
Automated identification of surveillance colonoscopy in inflammatory bowel disease using natural language processing.
Dig Dis Sci. 2013 Apr;58(4):936-41. doi: 10.1007/s10620-012-2433-8. Epub 2012 Oct 21.
7
Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates.
Dig Dis Sci. 2018 Jul;63(7):1794-1800. doi: 10.1007/s10620-018-5078-4. Epub 2018 Apr 26.
9
Applying a natural language processing tool to electronic health records to assess performance on colonoscopy quality measures.
Gastrointest Endosc. 2012 Jun;75(6):1233-9.e14. doi: 10.1016/j.gie.2012.01.045. Epub 2012 Apr 4.
10
Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
Methods Inf Med. 2020 Dec;59(S 02):e64-e78. doi: 10.1055/s-0040-1716403. Epub 2020 Oct 14.

引用本文的文献

1
Emerging applications of NLP and large language models in gastroenterology and hepatology: a systematic review.
Front Med (Lausanne). 2025 Jan 22;11:1512824. doi: 10.3389/fmed.2024.1512824. eCollection 2024.
5
Combining text mining with clinical decision support in clinical practice: a scoping review.
J Am Med Inform Assoc. 2023 Feb 16;30(3):588-603. doi: 10.1093/jamia/ocac240.
8
Defining Phenotypes from Clinical Data to Drive Genomic Research.
Annu Rev Biomed Data Sci. 2018 Jul;1:69-92. doi: 10.1146/annurev-biodatasci-080917-013335. Epub 2018 Apr 25.
10
ConceptWAS: a high-throughput method for early identification of COVID-19 presenting symptoms.
medRxiv. 2020 Nov 10:2020.11.06.20227165. doi: 10.1101/2020.11.06.20227165.

本文引用的文献

1
ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports.
J Biomed Inform. 2009 Oct;42(5):839-51. doi: 10.1016/j.jbi.2009.05.002. Epub 2009 May 10.
2
Recognizing obesity and comorbidities in sparse data.
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):561-70. doi: 10.1197/jamia.M3115. Epub 2009 Apr 23.
3
Tracking medical students' clinical experiences using natural language processing.
J Biomed Inform. 2009 Oct;42(5):781-9. doi: 10.1016/j.jbi.2009.02.004. Epub 2009 Feb 21.
4
Using empiric semantic correlation to interpret temporal assertions in clinical texts.
J Am Med Inform Assoc. 2009 Mar-Apr;16(2):220-7. doi: 10.1197/jamia.M3007. Epub 2008 Dec 11.
6
Identifying QT prolongation from ECG impressions using a general-purpose Natural Language Processor.
Int J Med Inform. 2009 Apr;78 Suppl 1(Suppl 1):S34-42. doi: 10.1016/j.ijmedinf.2008.09.001. Epub 2008 Oct 19.
10
An open-source framework for large-scale, flexible evaluation of biomedical text mining systems.
J Biomed Discov Collab. 2008 Jan 29;3:1. doi: 10.1186/1747-5333-3-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验