Suppr超能文献

开发一种自然语言处理系统,以识别电子病历中结肠镜检查的时间和状态。

Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records.

作者信息

Denny Joshua C, Peterson Josh F, Choma Neesha N, Xu Hua, Miller Randolph A, Bastarache Lisa, Peterson Neeraja B

机构信息

Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA.

出版信息

AMIA Annu Symp Proc. 2009 Nov 14;2009:141.

Abstract

Colorectal cancer (CRC) screening rates are low despite proven benefits. We developed natural language processing (NLP) algorithms to identify temporal expressions and status indicators, such as "patient refused" or "test scheduled." The authors incorporated the algorithms into the KnowledgeMap Concept Identifier system in order to detect references to completed colonoscopies within electronic text. The modified NLP system was evaluated using 200 randomly selected electronic medical records (EMRs) from a primary care population aged >/=50 years. The system detected completed colonoscopies with recall and precision of 0.93 and 0.92. The system was superior to a query of colonoscopy billing codes to determine screening status.

摘要

尽管已证实结直肠癌(CRC)筛查有诸多益处,但筛查率仍很低。我们开发了自然语言处理(NLP)算法,以识别时间表达和状态指标,如“患者拒绝”或“检查已安排”。作者将这些算法整合到知识图谱概念识别系统中,以便在电子文本中检测已完成结肠镜检查的相关记录。使用从年龄≥50岁的初级保健人群中随机选取的200份电子病历(EMR)对改良后的NLP系统进行评估。该系统检测已完成结肠镜检查的召回率和精确率分别为0.93和0.92。该系统在确定筛查状态方面优于查询结肠镜检查计费代码。

相似文献

2
Extracting timing and status descriptors for colonoscopy testing from electronic medical records.
J Am Med Inform Assoc. 2010 Jul-Aug;17(4):383-8. doi: 10.1136/jamia.2010.004804.
3
Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
Med Decis Making. 2012 Jan-Feb;32(1):188-97. doi: 10.1177/0272989X11400418. Epub 2011 Mar 10.
4
Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates.
Dig Dis Sci. 2018 Jul;63(7):1794-1800. doi: 10.1007/s10620-018-5078-4. Epub 2018 Apr 26.
5
Multi-center colonoscopy quality measurement utilizing natural language processing.
Am J Gastroenterol. 2015 Apr;110(4):543-52. doi: 10.1038/ajg.2015.51. Epub 2015 Mar 10.
6
Automated identification of surveillance colonoscopy in inflammatory bowel disease using natural language processing.
Dig Dis Sci. 2013 Apr;58(4):936-41. doi: 10.1007/s10620-012-2433-8. Epub 2012 Oct 21.
7
Anatomic and advanced adenoma detection rates as quality metrics determined via natural language processing.
Am J Gastroenterol. 2014 Dec;109(12):1844-9. doi: 10.1038/ajg.2014.147. Epub 2014 Jun 17.
8
Natural language processing as an alternative to manual reporting of colonoscopy quality metrics.
Gastrointest Endosc. 2015 Sep;82(3):512-9. doi: 10.1016/j.gie.2015.01.049. Epub 2015 Apr 22.
9
Development of an Automated Algorithm to Generate Guideline-based Recommendations for Follow-up Colonoscopy.
Clin Gastroenterol Hepatol. 2020 Aug;18(9):2038-2045.e1. doi: 10.1016/j.cgh.2019.10.013. Epub 2019 Oct 14.

引用本文的文献

1
A comparison of rule-based and machine learning approaches for classifying patient portal messages.
Int J Med Inform. 2017 Sep;105:110-120. doi: 10.1016/j.ijmedinf.2017.06.004. Epub 2017 Jun 23.
2
Sophia: A Expedient UMLS Concept Extraction Annotator.
AMIA Annu Symp Proc. 2014 Nov 14;2014:467-76. eCollection 2014.
3
Natural language processing and the oncologic history: is there a match?
J Oncol Pract. 2011 Jul;7(4):e15-9. doi: 10.1200/JOP.2011.000240.
4
Document-level classification of CT pulmonary angiography reports based on an extension of the ConText algorithm.
J Biomed Inform. 2011 Oct;44(5):728-37. doi: 10.1016/j.jbi.2011.03.011. Epub 2011 Apr 1.
5
What can natural language processing do for clinical decision support?
J Biomed Inform. 2009 Oct;42(5):760-72. doi: 10.1016/j.jbi.2009.08.007. Epub 2009 Aug 13.

本文引用的文献

1
"Understanding" medical school curriculum content using KnowledgeMap.
J Am Med Inform Assoc. 2003 Jul-Aug;10(4):351-62. doi: 10.1197/jamia.M1176. Epub 2003 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验