Department of Physics, The University of Queensland, Brisbane, QLD 4072, Australia.
J Phys Condens Matter. 2010 Jun 9;22(22):223201. doi: 10.1088/0953-8984/22/22/223201. Epub 2010 May 21.
Understanding the electronic charge distribution around oxygen vacancies in transition metal and rare earth oxides is a scientific challenge of considerable technological importance. We show how significant information about the charge distribution around vacancies in cerium oxide can be gained from a study of high resolution crystal structures of higher order oxides which exhibit ordering of oxygen vacancies. Specifically, we consider the implications of a bond valence sum analysis of Ce₇O₁₂ and Ce₁₁O₂₀. To illuminate our analysis we show alternative representations of the crystal structures in terms of orderly arrays of coordination defects and in terms of fluorite-type modules. We found that in Ce₇O₁₂, the excess charge resulting from removal of an oxygen atom delocalizes among all three triclinic Ce sites closest to the O vacancy. In Ce₁₁O₂₀, the charge localizes on the next nearest neighbour Ce atoms. Our main result is that the charge prefers to distribute itself so that it is farthest away from the O vacancies. This contradicts the standard picture of charge localization which assumes that each of the two excess electrons localizes on one of the cerium ions nearest to the vacancy. This standard picture is assumed in most calculations based on density functional theory (DFT). Based on the known crystal structure of Pr₆O₁₁, we also predict that the charge in Ce₆O₁₁ will be found in the second coordination shell of the O vacancy. We also extend the analysis to the Magnéli phases of titanium and vanadium oxides (M(n)O(₂n₋₁), where M = Ti, V) and consider the problem of metal-insulator transitions (MIT) in these oxides. We found that the bond valence analysis may provide a useful predictive tool in structures where the MIT is accompanied by significant changes in the metal-oxygen bond lengths. Although this review focuses mainly on bulk cerium oxides with some extension to the Magnéli phases of titanium and vanadium, our approach to characterizing electronic properties of oxygen vacancies and the physical insights gained should also be relevant to surface defects and to other rare earth and transition metal oxides.
理解过渡金属和稀土氧化物中氧空位的电子电荷分布是一个具有相当技术重要性的科学挑战。我们展示了如何通过研究具有氧空位有序排列的高阶氧化物的高分辨率晶体结构,来获得关于氧化铈中空位周围电荷分布的重要信息。具体来说,我们考虑了 Ce₇O₁₂ 和 Ce₁₁O₂₀ 的键价和分析的含义。为了阐明我们的分析,我们展示了根据有序的配位缺陷排列和萤石型模块来表示晶体结构的替代表示。我们发现,在 Ce₇O₁₂ 中,由于去除一个氧原子而产生的过剩电荷在最靠近 O 空位的三个三斜 Ce 位之间离域。在 Ce₁₁O₂₀ 中,电荷局域在最近邻 Ce 原子上。我们的主要结果是,电荷倾向于分布在离 O 空位最远的位置。这与电荷局域化的标准图像相矛盾,该图像假设两个过剩电子中的每一个都局域在最靠近空位的 Ce 离子之一上。这一标准图像在基于密度泛函理论(DFT)的大多数计算中都被假设。基于已知的 Pr₆O₁₁ 晶体结构,我们还预测 Ce₆O₁₁ 中的电荷将出现在 O 空位的第二配位壳层中。我们还将分析扩展到钛和钒氧化物的 Magnéli 相(M(n)O(₂n₋₁),其中 M = Ti,V),并考虑这些氧化物中的金属-绝缘体转变(MIT)问题。我们发现,键价分析可能是一种有用的预测工具,可用于 MIT 伴随着金属-氧键长度发生显著变化的结构中。虽然本综述主要集中在具有一些扩展到钛和钒的 Magnéli 相的块状氧化铈上,但我们用于表征氧空位的电子性质和获得的物理见解的方法也应该与表面缺陷以及其他稀土和过渡金属氧化物有关。