Department of Chemistry, University College London, 20 Gordon Street, London, UK.
J Phys Condens Matter. 2010 Jun 30;22(25):255401. doi: 10.1088/0953-8984/22/25/255401. Epub 2010 Jun 7.
The crystal structure of the iron oxide γ-Fe₂O₃ is usually reported in either the cubic system (space group P4(3)32) with partial Fe vacancy disorder or in the tetragonal system (space group P4(1)2(1)2) with full site ordering and c/a≈3. Using a supercell of the cubic structure, we obtain the spectrum of energies of all the ordered configurations which contribute to the partially disordered P4(3)32 cubic structure. Our results show that the configuration with space group P4(1)2(1)2 is indeed much more stable than the others, and that this stability arises from a favourable electrostatic contribution, as this configuration exhibits the maximum possible homogeneity in the distribution of iron cations and vacancies. Maghemite is therefore expected to be fully ordered in equilibrium, and deviations from this behaviour should be associated with metastable growth, extended anti-site defects and surface effects in the case of small nanoparticles. The confirmation of the ordered tetragonal structure allows us to investigate the electronic structure of the material using density functional theory (DFT) calculations. The inclusion of a Hubbard (DFT + U) correction allows the calculation of a band gap in good agreement with experiment. The value of the gap is dependent on the electron spin, which is the basis for the spin-filtering properties of maghemite.
γ-Fe₂O₃ 氧化亚铁的晶体结构通常以具有部分 Fe 空位无序的立方晶系(空间群 P4(3)32)或具有全位有序和 c/a≈3 的四方晶系(空间群 P4(1)2(1)2)报告。我们使用立方结构的超胞,得到了对部分无序 P4(3)32 立方结构有贡献的所有有序构型的能量谱。我们的结果表明,具有空间群 P4(1)2(1)2 的构型确实比其他构型更稳定,这种稳定性来自于有利的静电贡献,因为这种构型表现出铁阳离子和空位分布的最大可能均匀性。因此,磁铁矿在平衡时应该是完全有序的,而偏离这种行为应该与亚稳生长、扩展反位缺陷和小纳米粒子的表面效应有关。有序四方结构的证实使我们能够使用密度泛函理论(DFT)计算来研究材料的电子结构。包含 Hubbard(DFT + U)修正允许计算与实验很好吻合的能带隙。带隙的值取决于电子自旋,这是磁铁矿的自旋过滤特性的基础。