Dept. of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biomaterials. 2011 Jun;32(16):3949-57. doi: 10.1016/j.biomaterials.2011.02.018.
The extracellular matrix (ECM) is a complex organization of structural proteins found within tissues and organs. Heterogeneous tissues with spatially and temporally modulated properties play an important role in organism physiology. Here we present a benzophenone (BP) based direct, photolithographic approach to spatially pattern solution phase biomolecules within collagen-GAG (CG) scaffolds and demonstrate creation of a wide range of patterns composed of multiple biomolecular species in a manner independent from scaffold fabrication steps. We demonstrate the ability to immobilize biomolecules at surface densities of up to 1000 ligands per square micron on the scaffold strut surface and to depths limited by the penetration depth of the excitation source into the scaffold structure. Importantly, while BP photopatterning does further crosslink the CG scaffold, evidenced by increased mechanical properties and collagen crystallinity, it does not affect scaffold microstructural or compositional properties or negatively influence cell adhesion, viability, or proliferation. We show that covalently photoimmobilized fibronectin within a CG scaffold significantly increases the speed of MC3T3-E1 cell attachment relative to the bare CG scaffold or non-specifically adsorbed fibronectin, suggesting that this approach can be used to improve scaffold bioactivity. Our findings, on the whole, establish the use of direct, BP photolithography as a methodology for covalently incorporating activity-improving biochemical cues within 3D collagen biomaterial scaffolds with spatial control over biomolecular deposition.
细胞外基质 (ECM) 是存在于组织和器官中的结构蛋白的复杂组织。具有空间和时间调节特性的异质组织在生物体生理学中起着重要作用。在这里,我们提出了一种基于苯并二酮 (BP) 的直接、光光刻方法,可在胶原糖胺聚糖 (CG) 支架内空间模式化溶液相生物分子,并证明可以以与支架制造步骤无关的方式创建由多种生物分子组成的多种图案。我们证明了能够在支架支柱表面上将生物分子固定在高达每平方微米 1000 个配体的表面密度,并且可以达到激发源穿透支架结构的深度。重要的是,虽然 BP 光图案化进一步交联 CG 支架,这可以通过增加机械性能和胶原结晶度来证明,但它不会影响支架的微观结构或组成特性,也不会对细胞黏附、活力或增殖产生负面影响。我们表明,在 CG 支架内共价光固定的纤连蛋白显著提高了 MC3T3-E1 细胞附着的速度,与裸 CG 支架或非特异性吸附的纤连蛋白相比,这表明这种方法可用于提高支架的生物活性。总的来说,我们的发现确立了直接的 BP 光刻作为一种方法,可用于在具有空间控制生物分子沉积的 3D 胶原生物材料支架内共价结合提高活性的生化线索。