Suppr超能文献

模仿体内组织变化的刚度梯度调节间充质干细胞命运。

Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS One. 2011 Jan 5;6(1):e15978. doi: 10.1371/journal.pone.0015978.

Abstract

Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior.

摘要

间充质干细胞 (MSC) 的分化部分受组织硬度调节,但 MSCs 通常可在组织中遇到由病理变化(例如心肌梗塞约 8.7±1.5kPa/mm)或正常组织变化(例如心肌约 0.6±0.9kPa/mm)引起的硬度梯度;由于迁移主要通过生理梯度而不是病理梯度发生,因此尚不清楚 MSC 是先分化还是先迁移。在含有 1.0±0.1kPa/mm 生理梯度的水凝胶上培养长达 21 天的 MSC 经历定向迁移,或趋硬性迁移,向上硬度梯度迁移而不是保持静止。对形态和分化标志物的时间评估表明,MSC 迁移到较硬的基质中,然后分化为更具收缩性的肌原性表型。然而,在从软到硬区域迁移的细胞中,表型并非完全由硬水凝胶决定,因为一些细胞保留了神经标志物的表达。这些数据可能表明,不仅是刚度,刚度变化也可以是 MSC 行为的重要调节剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e72e/3016411/c826fbe33768/pone.0015978.g001.jpg

相似文献

1
Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate.
PLoS One. 2011 Jan 5;6(1):e15978. doi: 10.1371/journal.pone.0015978.
2
Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength.
Biotechnol J. 2013 Apr;8(4):472-84. doi: 10.1002/biot.201200205. Epub 2013 Feb 28.
4
Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence.
Tissue Eng Part A. 2020 Dec;26(23-24):1259-1271. doi: 10.1089/ten.tea.2020.0030. Epub 2020 Jul 6.
5
Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells.
Aging (Albany NY). 2020 Dec 9;13(2):2231-2250. doi: 10.18632/aging.202244.
7
Comparing Single Cell Versus Pellet Encapsulation of Mesenchymal Stem Cells in Three-Dimensional Hydrogels for Cartilage Regeneration.
Tissue Eng Part A. 2019 Oct;25(19-20):1404-1412. doi: 10.1089/ten.TEA.2018.0289. Epub 2019 May 2.
9
Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells.
Acta Biomater. 2020 Mar 15;105:68-77. doi: 10.1016/j.actbio.2020.01.034. Epub 2020 Jan 23.
10
Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis.
Langmuir. 2019 Jun 11;35(23):7478-7486. doi: 10.1021/acs.langmuir.8b02529. Epub 2018 Sep 25.

引用本文的文献

2
Survivin modulates stiffness-induced vascular smooth muscle cell motility.
APL Bioeng. 2025 Jun 4;9(2):026120. doi: 10.1063/5.0252766. eCollection 2025 Jun.
7
Cellular mechanical memory: a potential tool for mesenchymal stem cell-based therapy.
Stem Cell Res Ther. 2025 Mar 31;16(1):159. doi: 10.1186/s13287-025-04249-x.
8
Tuneable Recombinant Spider Silk Protein Hydrogels for Drug Release and 3D Cell Culture.
Adv Funct Mater. 2024 Aug 28;34(35):2303622. doi: 10.1002/adfm.202303622. Epub 2023 May 26.
9
Spatial regulation of hydrogel polymerization reaction using ultrasound-driven streaming vortex.
Ultrason Sonochem. 2024 Nov;110:107053. doi: 10.1016/j.ultsonch.2024.107053. Epub 2024 Sep 4.

本文引用的文献

1
Optimal matrix rigidity for stress fiber polarization in stem cells.
Nat Phys. 2010 Jun 1;6(6):468-473. doi: 10.1038/nphys1613.
2
Preparation of hydrogel substrates with tunable mechanical properties.
Curr Protoc Cell Biol. 2010 Jun;Chapter 10:Unit 10.16. doi: 10.1002/0471143030.cb1016s47.
3
Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate.
Nat Mater. 2010 Jun;9(6):518-26. doi: 10.1038/nmat2732. Epub 2010 Apr 25.
4
The extracellular matrix: not just pretty fibrils.
Science. 2009 Nov 27;326(5957):1216-9. doi: 10.1126/science.1176009.
5
Intrinsic extracellular matrix properties regulate stem cell differentiation.
J Biomech. 2010 Jan 5;43(1):55-62. doi: 10.1016/j.jbiomech.2009.09.009. Epub 2009 Oct 2.
6
In situ elasticity modulation with dynamic substrates to direct cell phenotype.
Biomaterials. 2010 Jan;31(1):1-8. doi: 10.1016/j.biomaterials.2009.09.025. Epub 2009 Sep 27.
7
Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength.
Biophys J. 2009 Sep 2;97(5):1313-22. doi: 10.1016/j.bpj.2009.06.021.
8
Growth factors, matrices, and forces combine and control stem cells.
Science. 2009 Jun 26;324(5935):1673-7. doi: 10.1126/science.1171643.
9
A novel mode of cell detachment from fibrillar fibronectin matrix under shear.
J Cell Sci. 2009 May 15;122(Pt 10):1647-53. doi: 10.1242/jcs.040824. Epub 2009 Apr 28.
10
Guiding cell migration in 3D: a collagen matrix with graded directional stiffness.
Cell Motil Cytoskeleton. 2009 Mar;66(3):121-8. doi: 10.1002/cm.20331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验