Suppr超能文献

利用工程化的恶臭假单胞菌菌株从植物油生产聚(3-羟基丁酸-co-3-羟基己酸酯)。

Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.

出版信息

Appl Environ Microbiol. 2011 May;77(9):2847-54. doi: 10.1128/AEM.02429-10. Epub 2011 Mar 11.

Abstract

The polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content. Our group has engineered two R. eutropha strains that accumulate high levels of P(HB-co-HHx) with significant HHx content directly from palm oil, one of the world's most abundant plant oils. The strains express a newly characterized PHA synthase gene from the bacterium Rhodococcus aetherivorans I24. Expression of an enoyl coenzyme A (enoyl-CoA) hydratase gene (phaJ) from Pseudomonas aeruginosa was shown to increase PHA accumulation. Furthermore, varying the activity of acetoacetyl-CoA reductase (encoded by phaB) altered the level of HHx in the polymer. The strains with the highest PHA titers utilized plasmids for recombinant gene expression, so an R. eutropha plasmid stability system was developed. In this system, the essential pyrroline-5-carboxylate reductase gene proC was deleted from strain genomes and expressed from a plasmid, making the plasmid necessary for growth in minimal media. This study resulted in two engineered strains for production of P(HB-co-HHx) from palm oil. In palm oil fermentations, one strain accumulated 71% of its cell dry weight as PHA with 17 mol% HHx, while the other strain accumulated 66% of its cell dry weight as PHA with 30 mol% HHx.

摘要

聚羟基烷酸酯(PHA)共聚物聚(3-羟基丁酸酯-co-3-羟基己酸酯)[P(HB-co-HHx)]已被证明具有作为商业生物塑料的潜力。已经证明,使用表达能够将 HB 和 HHx 掺入聚合物中的异源 PHA 合酶的重组罗尔斯顿氏菌(Ralstonia eutropha)菌株,可以从植物油中合成 P(HB-co-HHx)。然而,用这些菌株,必须在培养基中加入短链脂肪酸,才能生成 HHx 含量高的 PHA。我们的小组已经对两种罗尔斯顿氏菌(R. eutropha)菌株进行了工程改造,它们可以直接从棕榈油(世界上最丰富的植物油之一)中积累高水平的 P(HB-co-HHx),并且具有显著的 HHx 含量。这些菌株表达了一种新鉴定的来自 Rhodococcus aetherivorans I24 的 PHA 合酶基因。表达铜绿假单胞菌(P. aeruginosa)的烯酰基辅酶 A(enoyl-CoA)水合酶基因(phaJ)被证明可以增加 PHA 的积累。此外,改变乙酰乙酰辅酶 A 还原酶(由 phaB 编码)的活性会改变聚合物中 HHx 的水平。具有最高 PHA 滴度的菌株使用质粒进行重组基因表达,因此开发了一种罗尔斯顿氏菌质粒稳定性系统。在该系统中,将必需的吡咯啉-5-羧酸盐还原酶基因 proC 从菌株基因组中删除,并从质粒中表达,使质粒成为在最小培养基中生长所必需的。这项研究导致了两种从棕榈油生产 P(HB-co-HHx)的工程菌株。在棕榈油发酵中,一种菌株将其细胞干重的 71%积累为 PHA,其中 HHx 含量为 17 mol%,而另一种菌株将其细胞干重的 66%积累为 PHA,其中 HHx 含量为 30 mol%。

相似文献

1
Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains.
Appl Environ Microbiol. 2011 May;77(9):2847-54. doi: 10.1128/AEM.02429-10. Epub 2011 Mar 11.
2
Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha.
Appl Microbiol Biotechnol. 2014 Jun;98(12):5461-9. doi: 10.1007/s00253-014-5617-7. Epub 2014 Mar 11.
3
Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha.
Bioprocess Biosyst Eng. 2018 Feb;41(2):229-235. doi: 10.1007/s00449-017-1861-4. Epub 2017 Nov 9.
4
5
Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil.
J Biosci Bioeng. 2014 Feb;117(2):184-190. doi: 10.1016/j.jbiosc.2013.07.016. Epub 2013 Aug 30.
6
Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents.
Biotechnol Bioeng. 2013 Feb;110(2):461-70. doi: 10.1002/bit.24713. Epub 2012 Sep 24.
10
Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha.
J Biotechnol. 1998 Oct 8;64(2-3):177-86. doi: 10.1016/s0168-1656(98)00110-2.

引用本文的文献

1
Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in .
Polymers (Basel). 2025 Jul 31;17(15):2104. doi: 10.3390/polym17152104.
3
Isopropanol production from carbon dioxide by using a zero-gap cell with culture broth as catholyte.
iScience. 2025 Jun 27;28(8):113018. doi: 10.1016/j.isci.2025.113018. eCollection 2025 Aug 15.
4
The development of bacteria as heterologous hosts.
Nat Prod Rep. 2025 Jul 28. doi: 10.1039/d5np00024f.
5
Polyhydroxyalkanoate production from food residues.
Appl Microbiol Biotechnol. 2025 Jul 23;109(1):171. doi: 10.1007/s00253-025-13554-7.
7
CnRed: Efficient, Marker-free Genome Engineering of H16 by Adapted Lambda Red Recombineering.
ACS Synth Biol. 2025 Mar 21;14(3):842-854. doi: 10.1021/acssynbio.4c00757. Epub 2025 Feb 24.
8
Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.
World J Microbiol Biotechnol. 2024 Nov 22;40(12):389. doi: 10.1007/s11274-024-04200-x.
10
Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system.
Nat Commun. 2024 Oct 28;15(1):9288. doi: 10.1038/s41467-024-53609-3.

本文引用的文献

1
Plasmid addiction systems: perspectives and applications in biotechnology.
Microb Biotechnol. 2010 Nov;3(6):634-57. doi: 10.1111/j.1751-7915.2010.00170.x.
2
Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16.
J Bacteriol. 2010 Oct;192(20):5319-28. doi: 10.1128/JB.00207-10. Epub 2010 Aug 20.
3
Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.
J Bacteriol. 2010 Oct;192(20):5454-64. doi: 10.1128/JB.00493-10. Epub 2010 Aug 13.
4
Biotech's green gold?
Nat Biotechnol. 2009 Jan;27(1):15-8. doi: 10.1038/nbt0109-15.
5
Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.
Nat Biotechnol. 2006 Oct;24(10):1257-62. doi: 10.1038/nbt1244. Epub 2006 Sep 10.
6
Pseudomonas oleovorans as a Source of Poly(beta-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters.
Appl Environ Microbiol. 1988 Aug;54(8):1977-82. doi: 10.1128/aem.54.8.1977-1982.1988.
9
Preparation and properties of a novel class of polyhydroxyalkanoate copolymers.
Biomacromolecules. 2005 Mar-Apr;6(2):580-6. doi: 10.1021/bm049472m.
10
Polyester synthases: natural catalysts for plastics.
Biochem J. 2003 Nov 15;376(Pt 1):15-33. doi: 10.1042/BJ20031254.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验