Dept. of Radiological Sciences, Univ. of California-Irvine, Medical Sciences B, B-140, Irvine, CA 92697, USA.
Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2096-104. doi: 10.1152/ajpheart.01123.2010. Epub 2011 Mar 11.
Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. However, an assessment of microvascular resistance (MR) requires a velocity wire. A first-pass distribution analysis technique to measure volumetric blood flow has been previously validated. The aim of this study was the in vivo validation of the MR measurement technique using first-pass distribution analysis. Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending coronary artery (LAD). Microspheres were injected into the LAD to create a model of microvascular dysfunction. Adenosine (400 μg·kg(-1)·min(-1)) was used to produce maximum hyperemia. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Q(a)) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the flow probe (Q(p)), coronary pressure (P(a)), and right atrium pressure (P(v)) were continuously recorded. Flow probe-based normalized MR (NMR(p)) and angiography-based normalized MR (NMR(a)) were calculated using Q(p) and Q(a), respectively. In 258 measurements, Q(a) showed a strong correlation with the gold standard Q(p) (Q(a) = 0.90 Q(p) + 6.6 ml/min, r(2) = 0.91, P < 0.0001). NMR(a) correlated linearly with NMR(p) (NMR(a) = 0.90 NMR(p) + 0.02 mmHg·ml(-1)·min(-1), r(2) = 0.91, P < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between NMR(a) and NMR(p). In conclusion, a technique based on angiographic image data for quantifying NMR was validated using a swine model. This study provides a method to measure NMR without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography.
结构性冠状动脉微循环异常是临床重要的预后决定因素。然而,微血管阻力 (MR) 的评估需要速度导丝。先前已经验证了一种用于测量容积血流的首过分布分析技术。本研究旨在通过首过分布分析验证 MR 测量技术的体内验证。12 只麻醉猪在前降支 (LAD) 近端节段安装了通过时间超声流量探头。将微球注入 LAD 以建立微血管功能障碍模型。用腺苷(400μg·kg(-1)·min(-1))产生最大充血。在 LAD 动脉床中画出感兴趣区域,使用血管造影图像生成时间密度曲线。使用时间密度曲线和假设在注射过程中血液瞬间被造影剂替代的方法测量容积血流测量值 (Q(a))。连续记录流量探头 (Q(p))、冠状动脉压力 (P(a)) 和右心房压力 (P(v))。使用 Q(p) 和 Q(a) 分别计算基于流量探头的归一化 MR (NMR(p)) 和基于血管造影的归一化 MR (NMR(a))。在 258 次测量中,Q(a) 与金标准 Q(p) 具有很强的相关性 (Q(a)=0.90 Q(p)+6.6 ml/min,r(2)=0.91,P<0.0001)。NMR(a)与 NMR(p)呈线性相关 (NMR(a)=0.90 NMR(p)+0.02mmHg·ml(-1)·min(-1),r(2)=0.91,P<0.0001)。此外,Bland-Altman 分析显示 NMR(a)和 NMR(p)之间具有很好的一致性。总之,使用猪模型验证了一种基于血管造影图像数据量化 NMR 的技术。这项研究提供了一种在不使用速度导丝的情况下测量 NMR 的方法,这可能有助于在冠状动脉造影期间评估微血管状况。