Suppr超能文献

尿素致蛋白质变性中骨架和侧链的贡献。

Backbone and side-chain contributions in protein denaturation by urea.

机构信息

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.

出版信息

Biophys J. 2011 Mar 16;100(6):1526-33. doi: 10.1016/j.bpj.2011.01.028.

Abstract

Urea is a commonly used protein denaturant, and it is of great interest to determine its interaction with various protein groups to elucidate the molecular basis of its effect on protein stability. Using the Trp-cage miniprotein as a model system, we report what we believe to be the first computation of changes in the preferential interaction coefficient of the protein upon urea denaturation from molecular-dynamics simulations and examine the contributions from the backbone and the side-chain groups. The preferential interaction is obtained from reversible folding/unfolding replica exchange molecular-dynamics simulations of Trp-cage in presence of urea, over a wide range of urea concentration. The increase in preferential interaction upon unfolding is dominated by the side-chain contribution, rather than the backbone. Similar trends are observed in simulations using two different force fields, Amber94 and Amber99sb, for the protein. The magnitudes of the side-chain and backbone contributions differ in the two force fields, despite containing identical protein-solvent interaction terms. The differences arise from the unfolded ensembles sampled, with Amber99sb favoring conformations with larger surface area and lower helical content. These results emphasize the importance of the side-chain interactions with urea in protein denaturation, and highlight the dependence of the computed driving forces on the unfolded ensemble sampled.

摘要

尿素是一种常用的蛋白质变性剂,确定其与各种蛋白质基团的相互作用对于阐明其对蛋白质稳定性影响的分子基础非常重要。我们使用 Trp-cage 小蛋白作为模型系统,报告了我们认为首次通过分子动力学模拟计算尿素变性过程中蛋白质优先相互作用系数的变化,并考察了骨架和侧链基团的贡献。优先相互作用是通过在尿素存在下对 Trp-cage 进行可逆折叠/去折叠复制交换分子动力学模拟获得的,覆盖了广泛的尿素浓度范围。在去折叠过程中,优先相互作用的增加主要是由侧链贡献引起的,而不是由骨架贡献引起的。在使用两种不同力场(Amber94 和 Amber99sb)进行的模拟中,也观察到了类似的趋势。尽管两种力场都包含相同的蛋白质-溶剂相互作用项,但侧链和骨架贡献的大小在两种力场中有所不同。差异来自于所采样的无规卷曲构象,Amber99sb 倾向于具有更大表面积和更低螺旋含量的构象。这些结果强调了侧链与尿素相互作用在蛋白质变性中的重要性,并突出了计算驱动力对所采样的无规卷曲构象的依赖性。

相似文献

1
Backbone and side-chain contributions in protein denaturation by urea.
Biophys J. 2011 Mar 16;100(6):1526-33. doi: 10.1016/j.bpj.2011.01.028.
2
Equilibrium study of protein denaturation by urea.
J Am Chem Soc. 2010 Feb 24;132(7):2338-44. doi: 10.1021/ja909348c.
4
Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.
J Am Chem Soc. 2016 Sep 14;138(36):11702-13. doi: 10.1021/jacs.6b05443. Epub 2016 Sep 1.
5
Protonation/deprotonation effects on the stability of the Trp-cage miniprotein.
Phys Chem Chem Phys. 2011 Oct 14;13(38):17056-63. doi: 10.1039/c1cp21193e. Epub 2011 Jul 20.
6
Thermodynamics of the Trp-cage miniprotein unfolding in urea.
Proteins. 2010 May 1;78(6):1376-81. doi: 10.1002/prot.22681.
10
Reorientation Motion and Preferential Interactions of a Peptide in Denaturants and Osmolyte.
J Phys Chem B. 2016 Mar 31;120(12):3089-99. doi: 10.1021/acs.jpcb.6b00028. Epub 2016 Mar 21.

引用本文的文献

1
A Computational Perspective to Intermolecular Interactions and the Role of the Solvent on Regulating Protein Properties.
Chem Rev. 2025 Aug 13;125(15):7023-7056. doi: 10.1021/acs.chemrev.4c00807. Epub 2025 Jul 28.
2
OSaMPle workflow for salivary metaproteomics analysis reveals dysbiosis in inflammatory bowel disease patients.
NPJ Biofilms Microbiomes. 2025 Apr 23;11(1):63. doi: 10.1038/s41522-025-00692-z.
3
Solvent accessible surface area-assessed molecular basis of osmolyte-induced protein stability.
RSC Adv. 2024 Aug 9;14(34):25031-25041. doi: 10.1039/d4ra02576h. eCollection 2024 Aug 5.
5
Effects of External Perturbations on Protein Systems: A Microscopic View.
ACS Omega. 2022 Nov 30;7(49):44556-44572. doi: 10.1021/acsomega.2c06199. eCollection 2022 Dec 13.
6
Tuning Protein Hydrogel Mechanics through Modulation of Nanoscale Unfolding and Entanglement in Postgelation Relaxation.
ACS Nano. 2022 Jul 26;16(7):10667-10678. doi: 10.1021/acsnano.2c02369. Epub 2022 Jun 22.
7
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2112021118.
8
Urea-aromatic interactions in biology.
Biophys Rev. 2020 Feb;12(1):65-84. doi: 10.1007/s12551-020-00620-9. Epub 2020 Feb 17.
9
Contrasting Effects of Guanidinium Chloride and Urea on the Activity and Unfolding of Lysozyme.
ACS Omega. 2018 Oct 25;3(10):14119-14126. doi: 10.1021/acsomega.8b01911. eCollection 2018 Oct 31.
10
Thermally versus Chemically Denatured Protein States.
Biochemistry. 2019 May 28;58(21):2519-2523. doi: 10.1021/acs.biochem.9b00089. Epub 2019 May 16.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Interaction of arginine with proteins and the mechanism by which it inhibits aggregation.
J Phys Chem B. 2010 Oct 28;114(42):13426-38. doi: 10.1021/jp108399g.
3
Mutation of charged residues to neutral ones accelerates urea denaturation of HP-35.
J Phys Chem B. 2010 Sep 16;114(36):11820-6. doi: 10.1021/jp103770y.
4
Urea interactions with protein groups: a volumetric study.
Biopolymers. 2010 Oct;93(10):866-79. doi: 10.1002/bip.21478.
7
Equilibrium study of protein denaturation by urea.
J Am Chem Soc. 2010 Feb 24;132(7):2338-44. doi: 10.1021/ja909348c.
8
Thermodynamics of the Trp-cage miniprotein unfolding in urea.
Proteins. 2010 May 1;78(6):1376-81. doi: 10.1002/prot.22681.
10
Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model.
Proteins. 2010 Feb 15;78(3):695-704. doi: 10.1002/prot.22598.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验