Suppr超能文献

通过模拟和实验探究化学变性剂对天然无序蛋白质的作用。

Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States.

Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland.

出版信息

J Am Chem Soc. 2016 Sep 14;138(36):11702-13. doi: 10.1021/jacs.6b05443. Epub 2016 Sep 1.

Abstract

Chemical denaturants are the most commonly used agents for unfolding proteins and are thought to act by better solvating the unfolded state. Improved solvation is expected to lead to an expansion of unfolded chains with increasing denaturant concentration, providing a sensitive probe of the denaturant action. However, experiments have so far yielded qualitatively different results concerning the effects of chemical denaturation. Studies using Förster resonance energy transfer (FRET) and other methods found an increase in radius of gyration with denaturant concentration, but most small-angle X-ray scattering (SAXS) studies found no change. This discrepancy therefore challenges our understanding of denaturation mechanism and more generally the accuracy of these experiments as applied to unfolded or disordered proteins. Here, we use all-atom molecular simulations to investigate the effect of urea and guanidinium chloride on the structure of the intrinsically disordered protein ACTR, which can be studied by experiment over a wide range of denaturant concentration. Using unbiased molecular simulations with a carefully calibrated denaturant model, we find that the protein chain indeed swells with increasing denaturant concentration. This is due to the favorable association of urea or guanidinium chloride with the backbone of all residues and with the side-chains of almost all residues, with denaturant-water transfer free energies inferred from this association in reasonable accord with experimental estimates. Interactions of the denaturants with the backbone are dominated by hydrogen bonding, while interactions with side-chains include other contributions. By computing FRET efficiencies and SAXS intensities at each denaturant concentration, we show that the simulation trajectories are in accord with both experiments on this protein, demonstrating that there is no fundamental inconsistency between the two types of experiment. Agreement with experiment also supports the picture of chemical denaturation described in our simulations, driven by weak association of denaturant with the protein. Our simulations support some assumptions needed for each experiment to accurately reflect changes in protein size, namely, that the commonly used FRET chromophores do not qualitatively alter the results and that possible effects such as preferential solvent partitioning into the interior of the chain do not interfere with the determination of radius of gyration from the SAXS experiments.

摘要

化学变性剂是最常用的使蛋白质变性的试剂,被认为通过更好地溶解变性状态来发挥作用。随着变性剂浓度的增加,预计更好的溶剂化作用会导致变性链的扩展,从而提供对变性剂作用的敏感探针。然而,到目前为止,关于化学变性的影响,实验得到了定性上不同的结果。使用Förster 共振能量转移(FRET)和其他方法的研究发现,随着变性剂浓度的增加,回转半径增大,但大多数小角 X 射线散射(SAXS)研究发现没有变化。因此,这种差异挑战了我们对变性机制的理解,更普遍地挑战了这些实验应用于变性或无序蛋白质的准确性。在这里,我们使用全原子分子模拟来研究脲和盐酸胍对内在无序蛋白 ACTR 结构的影响,该蛋白可以通过实验在广泛的变性剂浓度范围内进行研究。使用带有精心校准的变性剂模型的无偏分子模拟,我们发现随着变性剂浓度的增加,蛋白质链确实会膨胀。这是由于脲或盐酸胍与所有残基的骨架以及几乎所有残基的侧链的有利缔合,从这种缔合推断出的变性剂-水转移自由能与实验估计值相当吻合。变性剂与骨架的相互作用主要由氢键主导,而与侧链的相互作用包括其他贡献。通过计算每个变性剂浓度下的 FRET 效率和 SAXS 强度,我们表明模拟轨迹与该蛋白质的实验一致,表明这两种类型的实验之间没有根本的不一致。与实验的一致性也支持了我们在模拟中描述的化学变性图景,由变性剂与蛋白质的弱缔合驱动。我们的模拟支持了每个实验所需的一些假设,以准确反映蛋白质大小的变化,即常用的 FRET 发色团不会从根本上改变结果,并且可能的影响,如优先溶剂分配到链的内部,不会干扰从 SAXS 实验确定回转半径。

相似文献

1
Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.
J Am Chem Soc. 2016 Sep 14;138(36):11702-13. doi: 10.1021/jacs.6b05443. Epub 2016 Sep 1.
2
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.
J Am Chem Soc. 2016 Sep 14;138(36):11714-26. doi: 10.1021/jacs.6b05917. Epub 2016 Sep 1.
3
Commonly used FRET fluorophores promote collapse of an otherwise disordered protein.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8889-8894. doi: 10.1073/pnas.1813038116. Epub 2019 Apr 16.
6
Backbone and side-chain contributions in protein denaturation by urea.
Biophys J. 2011 Mar 16;100(6):1526-33. doi: 10.1016/j.bpj.2011.01.028.
7
Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations.
J Chem Theory Comput. 2015 Nov 10;11(11):5543-53. doi: 10.1021/acs.jctc.5b00778. Epub 2015 Oct 13.
8
Effect of urea on the β-hairpin conformational ensemble and protein denaturation mechanism.
J Am Chem Soc. 2011 Nov 2;133(43):17200-6. doi: 10.1021/ja202849a. Epub 2011 Oct 6.
10

引用本文的文献

2
Tuning biological processes co-solutes: from single proteins to protein condensates - the case of α-elastin condensation.
Chem Sci. 2025 Feb 24;16(14):5897-5906. doi: 10.1039/d4sc07335e. eCollection 2025 Apr 2.
3
Intrinsic stiffness and -solvent regime in intrinsically disordered proteins: Implications for liquid-liquid phase separation.
PNAS Nexus. 2025 Feb 5;4(2):pgaf039. doi: 10.1093/pnasnexus/pgaf039. eCollection 2025 Feb.
4
Survey of the Aβ-peptide structural diversity: molecular dynamics approaches.
Biophys Rev. 2024 Nov 20;16(6):701-722. doi: 10.1007/s12551-024-01253-y. eCollection 2024 Dec.
6
FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries.
Commun Biol. 2024 Mar 9;7(1):298. doi: 10.1038/s42003-024-05910-6.
7
Hierarchical Assembly of Single-Stranded RNA.
J Chem Theory Comput. 2024 Mar 12;20(5):2246-2260. doi: 10.1021/acs.jctc.3c01049. Epub 2024 Feb 15.
9
Glutamine-rich regions of the disordered CREB transactivation domain mediate dynamic intra- and intermolecular interactions.
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2313835120. doi: 10.1073/pnas.2313835120. Epub 2023 Nov 14.
10
The molecular basis for cellular function of intrinsically disordered protein regions.
Nat Rev Mol Cell Biol. 2024 Mar;25(3):187-211. doi: 10.1038/s41580-023-00673-0. Epub 2023 Nov 13.

本文引用的文献

1
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.
J Am Chem Soc. 2016 Sep 14;138(36):11714-26. doi: 10.1021/jacs.6b05917. Epub 2016 Sep 1.
2
Protein folding: Vexing debates on a fundamental problem.
Biophys Chem. 2016 May;212:17-21. doi: 10.1016/j.bpc.2016.03.001. Epub 2016 Mar 17.
3
Folding PDZ2 Domain Using the Molecular Transfer Model.
J Phys Chem B. 2016 Aug 25;120(33):8090-101. doi: 10.1021/acs.jpcb.6b00327. Epub 2016 Mar 15.
4
Where the complex things are: single molecule and ensemble spectroscopic investigations of protein folding dynamics.
Curr Opin Struct Biol. 2016 Feb;36:1-9. doi: 10.1016/j.sbi.2015.11.006. Epub 2015 Dec 11.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
7
Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations.
J Chem Theory Comput. 2015 Nov 10;11(11):5543-53. doi: 10.1021/acs.jctc.5b00778. Epub 2015 Oct 13.
9
Sequence- and Temperature-Dependent Properties of Unfolded and Disordered Proteins from Atomistic Simulations.
J Phys Chem B. 2015 Nov 19;119(46):14622-30. doi: 10.1021/acs.jpcb.5b08619. Epub 2015 Nov 10.
10
Quantitative interpretation of FRET experiments via molecular simulation: force field and validation.
Biophys J. 2015 Jun 2;108(11):2721-31. doi: 10.1016/j.bpj.2015.04.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验