Department of Physiology and Biophysics, University of California, Irvine, California, USA.
Biophys J. 2011 Mar 16;100(6):1559-67. doi: 10.1016/j.bpj.2011.02.004.
We report on the formation of the secondary and tertiary structure of bacteriorhodopsin during its in vitro refolding from an SDS-denatured state. We used the mobility of single spin labels in seven samples, attached at various locations to six of the seven helical segments to engineered cysteine residues, to follow coil-to-helix formation. Distance measurements obtained by spin dipolar quenching in six samples labeled at either the cytoplasmic or extracellular ends of pairs of helices revealed the time dependence of the recovery of the transmembrane helical bundle. The secondary structure in the majority of the helical segments refolds with a time constant of <100-140 ms. Recovery of the tertiary structure is achieved by sequential association of the helices and occurs in at least three distinct steps with time constants of 1), well below 1 s; 2), 3-4 s; and 3), 60-130 s (the latter depending on the helical pair). The slowest of these processes occurs in concert with recovery of the retinal chromophore.
我们报告了在体外从 SDS 变性状态下重新折叠时细菌视紫红质的二级和三级结构的形成。我们使用了在六个螺旋片段中的六个位置处附着的七个单自旋标记的迁移率,来研究螺旋到螺旋的形成。在六个用细胞内或细胞外的一对螺旋末端的半胱氨酸残基标记的样品中通过自旋偶极子猝灭获得的距离测量揭示了跨膜螺旋束恢复的时间依赖性。大多数螺旋片段的二级结构以 <100-140 ms 的时间常数重新折叠。三级结构的恢复是通过螺旋的顺序缔合实现的,至少有三个不同的步骤,时间常数分别为 1),远低于 1 秒;2),3-4 秒;3),60-130 秒(后者取决于螺旋对)。这些过程中最慢的与视黄醛发色团的恢复同时发生。