Suppr超能文献

通过 RNA 适体对单个 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体亚基的有效和选择性抑制。

Potent and selective inhibition of a single alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit by an RNA aptamer.

机构信息

Department of Chemistry and Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, USA.

出版信息

J Biol Chem. 2011 Apr 29;286(17):15608-17. doi: 10.1074/jbc.M111.229559. Epub 2011 Mar 14.

Abstract

Inhibitors of AMPA-type glutamate ion channels are useful as biochemical probes for structure-function studies and as drug candidates for a number of neurological disorders and diseases. Here, we describe the identification of an RNA inhibitor or aptamer by an in vitro evolution approach and a characterization of its mechanism of inhibition on the sites of interaction by equilibrium binding and on the receptor channel opening rate by a laser-pulse photolysis technique. Our results show that the aptamer is a noncompetitive inhibitor that selectively inhibits the GluA2Q(flip) AMPA receptor subunit without any effect on other AMPA receptor subunits or kainate or NMDA receptors. On the GluA2 subunit, this aptamer preferentially inhibits the flip variant. Furthermore, the aptamer preferentially inhibits the closed-channel state of GluA2Q(flip) with a K(I) = 1.5 μM or by ∼15-fold over the open-channel state. The potency and selectivity of this aptamer rival those of small molecule inhibitors. Together, these properties make this aptamer a promising candidate for the development of water-soluble, highly potent, and GluA2 subunit-selective drugs.

摘要

AMPA 型谷氨酸离子通道抑制剂可用作生化探针进行结构功能研究,也可用作多种神经紊乱和疾病的药物候选物。在这里,我们通过体外进化方法描述了一种 RNA 抑制剂或适体的鉴定,并通过平衡结合研究了其在相互作用部位的抑制机制,通过激光脉冲光解技术研究了其在受体通道开启速率方面的抑制机制。我们的研究结果表明,该适体是一种非竞争性抑制剂,可选择性抑制 GluA2Q(翻转)AMPA 受体亚基,而对其他 AMPA 受体亚基、海人酸受体或 NMDA 受体无任何影响。在 GluA2 亚基上,该适体优先抑制翻转变体。此外,该适体优先抑制 GluA2Q(翻转)的闭通道状态,其 K(i) 值为 1.5 μM,或与开放通道状态相比,抑制作用增强约 15 倍。该适体的效力和选择性可与小分子抑制剂相媲美。这些特性使该适体成为开发水溶性、高效和 GluA2 亚基选择性药物的有前途的候选物。

相似文献

4
Chemically Modified, α-Amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) Receptor RNA Aptamers Designed for in Vivo Use.
ACS Chem Neurosci. 2017 Nov 15;8(11):2437-2445. doi: 10.1021/acschemneuro.7b00211. Epub 2017 Sep 5.
7
RNA aptamers selected against the GluR2 glutamate receptor channel.
Biochemistry. 2007 Nov 6;46(44):12648-55. doi: 10.1021/bi701036p. Epub 2007 Oct 12.
9
Water soluble RNA based antagonist of AMPA receptors.
Neuropharmacology. 2007 Aug;53(2):242-51. doi: 10.1016/j.neuropharm.2007.05.007. Epub 2007 May 21.
10
A kainate receptor-selective RNA aptamer.
J Biol Chem. 2020 May 8;295(19):6280-6288. doi: 10.1074/jbc.RA119.011649. Epub 2020 Mar 11.

引用本文的文献

1
GluK2 kainate receptor subunit-selective, potentiating RNA aptamer.
Sci Rep. 2025 Sep 11;15(1):32405. doi: 10.1038/s41598-025-15323-y.
2
RNA aptamers for AMPA receptors.
Neuropharmacology. 2021 Nov 1;199:108761. doi: 10.1016/j.neuropharm.2021.108761. Epub 2021 Sep 9.
3
A kainate receptor-selective RNA aptamer.
J Biol Chem. 2020 May 8;295(19):6280-6288. doi: 10.1074/jbc.RA119.011649. Epub 2020 Mar 11.
4
Developing RNA aptamers for potential treatment of neurological diseases.
Future Med Chem. 2019 Mar;11(6):551-565. doi: 10.4155/fmc-2018-0364. Epub 2019 Mar 26.
6
Mechanism-based design of 2,3-benzodiazepine inhibitors for AMPA receptors.
Acta Pharm Sin B. 2015 Nov;5(6):500-5. doi: 10.1016/j.apsb.2015.07.007. Epub 2015 Sep 26.
7
RNA based antagonist of NMDA receptors.
ACS Chem Neurosci. 2014 Jul 16;5(7):559-67. doi: 10.1021/cn500041k. Epub 2014 Apr 16.
8
Mechanism and site of inhibition of AMPA receptors: pairing a thiadiazole with a 2,3-benzodiazepine scaffold.
ACS Chem Neurosci. 2014 Feb 19;5(2):138-47. doi: 10.1021/cn400193u. Epub 2013 Dec 17.
9
Receptor and channel heteromers as pain targets.
Pharmaceuticals (Basel). 2012 Feb 23;5(3):249-78. doi: 10.3390/ph5030249.
10
Current progress of RNA aptamer-based therapeutics.
Front Genet. 2012 Nov 2;3:234. doi: 10.3389/fgene.2012.00234. eCollection 2012.

本文引用的文献

2
Organic chemistry and biology: chemical biology through the eyes of collaboration.
J Org Chem. 2009 Dec 18;74(24):9245-64. doi: 10.1021/jo901767e.
3
Identifying druggable disease-modifying gene products.
Curr Opin Chem Biol. 2009 Dec;13(5-6):549-55. doi: 10.1016/j.cbpa.2009.08.003. Epub 2009 Sep 7.
5
Flip and flop: a molecular determinant for AMPA receptor channel opening.
Biochemistry. 2009 May 5;48(17):3767-77. doi: 10.1021/bi8015907.
6
Structure of the S1S2 glutamate binding domain of GLuR3.
Proteins. 2009 May 15;75(3):628-37. doi: 10.1002/prot.22274.
7
Application of natural product-inspired diversity-oriented synthesis to drug discovery.
Prog Drug Res. 2008;66:187, 189-216. doi: 10.1007/978-3-7643-8595-8_3.
8
Mechanism of inhibition of the GluR2 AMPA receptor channel opening by 2,3-benzodiazepine derivatives.
Biochemistry. 2008 Jan 22;47(3):1061-9. doi: 10.1021/bi700782x. Epub 2007 Dec 28.
9
RNA aptamers selected against the GluR2 glutamate receptor channel.
Biochemistry. 2007 Nov 6;46(44):12648-55. doi: 10.1021/bi701036p. Epub 2007 Oct 12.
10
Receptor occupancy and channel-opening kinetics: a study of GLUR1 L497Y AMPA receptor.
J Biol Chem. 2007 Aug 3;282(31):22731-6. doi: 10.1074/jbc.M611821200. Epub 2007 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验