Luchowski Rafal, Calander Nils, Shtoyko Tanya, Apicella Elisa, Borejdo Julian, Gryczynski Zygmunt, Gryczynski Ignacy
University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, 3500 Camp Bowie Blvd., Fort Worth, TX 76107.
J Nanophotonics. 2010 Sep 22;4. doi: 10.1117/1.3500463.
Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2-3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures.
利用银半透明镜上的自组装胶体结构,对荧光强度变化进行了理论和实验研究。通过简化的准静态模型和有限元方法,我们证明了金属纳米结构与连续金属表面的近场相互作用创造了产生极大增强的表面等离子体共振的条件。这些结果被用于解释观察到的增强现象,并确定实验的最佳条件。研究的理论部分得到了关于详细发射强度变化报告的支持,这些报告提供了增强2 - 3个数量级的多个荧光热点。我们研究了两种荧光团:染料分子和具有相似光谱发射区域特征的荧光纳米球。使用寿命分辨荧光/反射共聚焦显微镜技术,我们发现最大的增强速率(约1000倍)来自银纳米结构的局部区域。