Suppr超能文献

饮食干预揭示了脂肪质量与脂肪组织 11β-羟类固醇脱氢酶 1 之间出人意料的反比关系。

Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11β-hydroxysteroid dehydrogenase type 1.

机构信息

Endocrinology Unit, Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1076-84. doi: 10.1152/ajpendo.00531.2010. Epub 2011 Mar 15.

Abstract

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.

摘要

膳食脂肪摄入量增加与肥胖、胰岛素抵抗和代谢性疾病有关。在转基因小鼠中,脂肪组织特异性过表达糖皮质激素放大酶 11β-羟类固醇脱氢酶 1 型(11β-HSD1)加剧高脂肪(HF)饮食诱导的内脏肥胖和糖尿病,而 11β-HSD1 基因敲除则改善了这一点,有利于非内脏脂肪的积累。矛盾的是,在正常小鼠中,HF 饮食诱导的肥胖(DIO)与脂肪组织 11β-HSD1 水平的显著下调有关。为了确定调节脂肪组织 11β-HSD1 的特定膳食脂肪,从而影响代谢性疾病,我们要么让小鼠自由进食富含饱和(硬脂酸盐)、单不饱和(油酸盐)或多不饱和(红花油)脂肪的饮食(占总热量的 45%),要么让它们配对进食低脂肪(11%)对照饮食 4 周。测定脂肪和肝脏质量以及糖皮质激素受体和 11β-HSD1mRNA 和活性水平。硬脂酸盐导致体重减轻和胰岛素血症,部分原因是吸收不良,这显著增加了血浆皮质酮水平和脂肪 11β-HSD1 活性。油酸盐诱导明显的体重增加和高胰岛素血症,与明显低的血浆皮质酮和脂肪 11β-HSD1 活性有关。与油酸盐相比,红花油的体重增加和高胰岛素血症不那么明显,尽管血浆皮质酮和脂肪 11β-HSD1 受到类似的抑制。然而,通过配对喂养,红花油选择性地减少内脏脂肪量,相对胰岛素敏感性增加,而不影响血浆皮质酮或脂肪 11β-HSD1。脂肪组织 11β-HSD1 与脂肪量之间的动态库选择性关系强烈暗示局部组织糖皮质激素再激活在脂肪动员中具有主导的生理作用。

相似文献

1
Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11β-hydroxysteroid dehydrogenase type 1.
Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1076-84. doi: 10.1152/ajpendo.00531.2010. Epub 2011 Mar 15.
2
11beta-hydroxysteroid dehydrogenase type 1 and obesity.
Front Horm Res. 2008;36:146-164. doi: 10.1159/000115363.
6
Regulation of 11β-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-κB and HIF-1α.
Am J Physiol Endocrinol Metab. 2013 May 15;304(10):E1035-41. doi: 10.1152/ajpendo.00029.2013. Epub 2013 Mar 19.
9
11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue.
Am J Physiol Endocrinol Metab. 2015 Jan 1;308(1):E84-95. doi: 10.1152/ajpendo.00205.2014. Epub 2014 Nov 11.

引用本文的文献

1
Neonatal overfeeding induced glucocorticoid overexposure accelerates hepatic lipogenesis in male rats.
Nutr Metab (Lond). 2018 May 2;15:30. doi: 10.1186/s12986-018-0272-0. eCollection 2018.
4
11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action.
Physiol Rev. 2013 Jul;93(3):1139-206. doi: 10.1152/physrev.00020.2012.
5
Regulation of 11β-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-κB and HIF-1α.
Am J Physiol Endocrinol Metab. 2013 May 15;304(10):E1035-41. doi: 10.1152/ajpendo.00029.2013. Epub 2013 Mar 19.
6
Effects of high fat feeding on liver gene expression in diabetic goto-kakizaki rats.
Gene Regul Syst Bio. 2012;6:151-68. doi: 10.4137/GRSB.S10371. Epub 2012 Nov 28.
7
Overview of animal models of obesity.
Curr Protoc Pharmacol. 2012 Sep;Chapter 5:Unit5.61. doi: 10.1002/0471141755.ph0561s58.
9
Is 11β-HSD1 expressed in islet β-cells and regulated by corticotropin-releasing hormone?
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):E1390; author reply E1391. doi: 10.1073/pnas.1116146109. Epub 2011 Dec 9.

本文引用的文献

1
Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity.
Trends Endocrinol Metab. 2010 Jun;21(6):345-52. doi: 10.1016/j.tem.2010.01.009. Epub 2010 Mar 10.
2
Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription.
Endocr J. 2010;57(4):317-24. doi: 10.1507/endocrj.k09e-298. Epub 2010 Feb 7.
4
Insulin and dexamethasone dynamically regulate adipocyte 11beta-hydroxysteroid dehydrogenase type 1.
Endocrinology. 2008 Aug;149(8):4069-79. doi: 10.1210/en.2008-0088. Epub 2008 May 8.
5
Selective versus total insulin resistance: a pathogenic paradox.
Cell Metab. 2008 Feb;7(2):95-6. doi: 10.1016/j.cmet.2007.12.009.
6
11beta-hydroxysteroid dehydrogenase type 1 and obesity.
Front Horm Res. 2008;36:146-164. doi: 10.1159/000115363.
7
Lack of hexose-6-phosphate dehydrogenase impairs lipid mobilization from mouse adipose tissue.
Endocrinology. 2008 May;149(5):2584-91. doi: 10.1210/en.2007-1705. Epub 2008 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验