Suppr超能文献

通过高分辨率同源性映射揭示自发性高血压大鼠品系间血压差异的遗传基础。

High-resolution identity by descent mapping uncovers the genetic basis for blood pressure differences between spontaneously hypertensive rat lines.

作者信息

Bell Rebecca, Herring Stacy M, Gokul Nisha, Monita Monique, Grove Megan L, Boerwinkle Eric, Doris Peter A

机构信息

Institute of Molecular Medicine, University of Texas HSC at Houston, Houston, TX 77030, USA.

出版信息

Circ Cardiovasc Genet. 2011 Jun;4(3):223-31. doi: 10.1161/CIRCGENETICS.110.958934. Epub 2011 Mar 15.

Abstract

BACKGROUND

The recent development of a large panel of genome-wide single nucleotide polymorphisms (SNPs) provides the opportunity to examine genetic relationships between distinct SHR lines that share hypertension but differ in their susceptibility to hypertensive end-organ disease.

METHODS AND RESULTS

We compared genotypes at nearly 10,000 SNPs obtained for the hypertension end-organ injury-susceptible spontaneously hypertensive rat (SHR)-A3 (SHRSP, SHR-stroke prone) line and the injury-resistant SHR-B2 line. This revealed that that the 2 lines were genetically identical by descent (IBD) across 86.6% of the genome. Areas of the genome that were not IBD were distributed across 19 of the 20 autosomes and the X chromosome. A block structure of non-IBD comprising a total of 121 haplotype blocks was formed by clustering of SNPs inherited from different ancestors. To test the null hypothesis that distinct SHR lines share a common set of hypertension susceptibility alleles, we compared blood pressure in adult SHR animals from both lines and their F1 and F2 progeny using telemetry. In 16- to 18-week-old animals fed a normal diet, systolic blood pressure (SBP, mm Hg) in SHR-A3 was 205.7 ± 3.86 (mean ± SEM, n = 26), whereas in similar SHR-B2 animals, SBP was 186.7 ± 2.53 (n = 20). In F1 and F2 animals, SBP was 188.2 ± 4.23 (n = 19) and 185.6 ± 1.1 (n = 211), respectively (P<10(-6), ANOVA). To identify non-IBD haplotype blocks contributing to blood pressure differences between these SHR lines, we developed a high-throughput SNP genotyping system to genotype SNPs marking non-IBD blocks. We mapped a single non-IBD block on chromosome 17 extending over <10 Mb, at which SHR-A3 alleles significantly elevate blood pressure compared with SHR-B2.

CONCLUSIONS

Thus hypertension in SHR-A3 and -B2 appears to arise from an overlapping set of susceptibility alleles, with SHR-A3 possessing an additional hypertension locus that contributes to further increase blood pressure.

摘要

背景

最近大量全基因组单核苷酸多态性(SNP)的发展为研究具有高血压但对高血压终末器官疾病易感性不同的不同自发性高血压大鼠(SHR)品系之间的遗传关系提供了机会。

方法与结果

我们比较了高血压终末器官损伤易感的自发性高血压大鼠(SHR)-A3(SHRSP,SHR-易中风)品系和抗损伤的SHR-B2品系在近10000个SNP位点的基因型。这表明这两个品系在86.6%的基因组上通过遗传同源(IBD)。基因组中不是IBD的区域分布在20条常染色体中的19条和X染色体上。由来自不同祖先的SNP聚类形成了一个总共121个单倍型块的非IBD块结构。为了检验不同SHR品系共享一组共同的高血压易感等位基因的零假设,我们使用遥测技术比较了这两个品系及其F1和F2后代成年SHR动物的血压。在喂食正常饮食的16至18周龄动物中,SHR-A3的收缩压(SBP,mmHg)为205.7±3.86(平均值±标准误,n = 26),而在类似的SHR-B2动物中,SBP为186.7±2.53(n = 20)。在F1和F2动物中,SBP分别为188.2±4.23(n = 19)和185.6±1.1(n = 211)(P<10^(-6),方差分析)。为了确定导致这些SHR品系血压差异的非IBD单倍型块,我们开发了一种高通量SNP基因分型系统,对标记非IBD块的SNP进行基因分型。我们在17号染色体上定位了一个延伸小于10 Mb的单个非IBD块,与SHR-B2相比,SHR-A3等位基因在该区域显著升高血压。

结论

因此,SHR-A3和-B2中的高血压似乎源于一组重叠的易感等位基因,SHR-A3拥有一个额外的高血压基因座,有助于进一步升高血压。

相似文献

1
High-resolution identity by descent mapping uncovers the genetic basis for blood pressure differences between spontaneously hypertensive rat lines.
Circ Cardiovasc Genet. 2011 Jun;4(3):223-31. doi: 10.1161/CIRCGENETICS.110.958934. Epub 2011 Mar 15.
2
Hypertensive renal disease: susceptibility and resistance in inbred hypertensive rat lines.
J Hypertens. 2013 Oct;31(10):2050-9. doi: 10.1097/HJH.0b013e328362f9a5.
3
Diversity in the preimmune immunoglobulin repertoire of SHR lines susceptible and resistant to end-organ injury.
Genes Immun. 2014 Dec;15(8):528-33. doi: 10.1038/gene.2014.40. Epub 2014 Jul 24.
4
Polygenic genetic variation affecting antibody formation underlies hypertensive renal injury in the stroke-prone spontaneously hypertensive rat.
Am J Physiol Renal Physiol. 2023 Sep 1;325(3):F317-F327. doi: 10.1152/ajprenal.00058.2023. Epub 2023 Jul 13.
6
Hypertensive renal injury is associated with gene variation affecting immune signaling.
Circ Cardiovasc Genet. 2014 Dec;7(6):903-10. doi: 10.1161/CIRCGENETICS.114.000533. Epub 2014 Nov 3.
7
Immunoglobulin locus associates with serum IgG levels and albuminuria.
J Am Soc Nephrol. 2011 May;22(5):881-9. doi: 10.1681/ASN.2010111148. Epub 2011 Mar 31.
9
Combined genealogical, mapping, and expression approaches to identify spontaneously hypertensive rat hypertension candidate genes.
Hypertension. 2005 Apr;45(4):698-704. doi: 10.1161/01.HYP.0000156498.78896.37. Epub 2005 Feb 14.
10
Germ-line genetic variation in the immunoglobulin heavy chain creates stroke susceptibility in the spontaneously hypertensive rat.
Physiol Genomics. 2019 Nov 1;51(11):578-585. doi: 10.1152/physiolgenomics.00054.2019. Epub 2019 Oct 14.

引用本文的文献

2
T-cells regulate albuminuria but not hypertension, renal histology, or the medullary transcriptome in the Dahl SSCD247 rat.
Am J Physiol Renal Physiol. 2024 Jan 1;326(1):F95-F104. doi: 10.1152/ajprenal.00229.2023. Epub 2023 Nov 2.
3
Polygenic genetic variation affecting antibody formation underlies hypertensive renal injury in the stroke-prone spontaneously hypertensive rat.
Am J Physiol Renal Physiol. 2023 Sep 1;325(3):F317-F327. doi: 10.1152/ajprenal.00058.2023. Epub 2023 Jul 13.
4
Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies.
Hypertension. 2021 Dec;78(6):1689-1700. doi: 10.1161/HYPERTENSIONAHA.121.18112. Epub 2021 Nov 10.
5
Genetic susceptibility of hypertension-induced kidney disease.
Physiol Rep. 2021 Jan;9(1):e14688. doi: 10.14814/phy2.14688.
6
Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat.
Genes Immun. 2020 May;21(3):182-192. doi: 10.1038/s41435-020-0097-5. Epub 2020 Apr 17.
7
Polymorphism Disrupts Immune Signaling and Creates Renal Injury in Hypertension.
J Am Heart Assoc. 2020 Mar 3;9(5):e014142. doi: 10.1161/JAHA.119.014142. Epub 2020 Feb 20.
8
Germ-line genetic variation in the immunoglobulin heavy chain creates stroke susceptibility in the spontaneously hypertensive rat.
Physiol Genomics. 2019 Nov 1;51(11):578-585. doi: 10.1152/physiolgenomics.00054.2019. Epub 2019 Oct 14.
9
Adaptive Immunity in Hypertension.
Curr Hypertens Rep. 2019 Jul 18;21(9):68. doi: 10.1007/s11906-019-0971-6.

本文引用的文献

1
Recent advances in genetics of the spontaneously hypertensive rat.
Curr Hypertens Rep. 2010 Feb;12(1):5-9. doi: 10.1007/s11906-009-0083-9.
2
New loci associated with kidney function and chronic kidney disease.
Nat Genet. 2010 May;42(5):376-84. doi: 10.1038/ng.568. Epub 2010 Apr 11.
3
A loss-of-function mutation in NaPi-IIa and renal Fanconi's syndrome.
N Engl J Med. 2010 Mar 25;362(12):1102-9. doi: 10.1056/NEJMoa0905647.
4
Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R851-61. doi: 10.1152/ajpregu.00002.2010. Epub 2010 Jan 27.
5
Genome-wide identification of allelic expression in hypertensive rats.
Circ Cardiovasc Genet. 2009 Apr;2(2):106-15. doi: 10.1161/CIRCGENETICS.108.809509. Epub 2009 Feb 12.
6
Genetic analysis of blood pressure in 8 mouse intercross populations.
Hypertension. 2009 Oct;54(4):802-9. doi: 10.1161/HYPERTENSIONAHA.109.134569. Epub 2009 Aug 3.
7
SNP genotyping using the Sequenom MassARRAY iPLEX platform.
Curr Protoc Hum Genet. 2009 Jan;Chapter 2:Unit 2.12. doi: 10.1002/0471142905.hg0212s60.
8
Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension.
Nat Genet. 2008 Aug;40(8):952-4. doi: 10.1038/ng.164. Epub 2008 Jun 29.
9
Differences in DBA/1J and DBA/2J reveal lipid QTL genes.
J Lipid Res. 2008 Nov;49(11):2402-13. doi: 10.1194/jlr.M800244-JLR200. Epub 2008 May 23.
10
SNP and haplotype mapping for genetic analysis in the rat.
Nat Genet. 2008 May;40(5):560-6. doi: 10.1038/ng.124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验