Thomas J. Watson Sr Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2011 Apr 7;472(7341):69-73. doi: 10.1038/nature09933. Epub 2011 Mar 16.
Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nanofabrication techniques. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency (EIT) and parametric normal-mode splitting. In atomic systems, studies of slow and stopped light (applicable to modern optical networks and future quantum networks) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon-phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.
在微纳加工技术取得进展之后,控制局部光和机械激发之间的相互作用最近成为可能。到目前为止,大多数关于光机械的实验研究都集中在通过其与光学的相互作用来测量和控制机械子系统,并导致了机械系统的动力学反作用冷却和光学刚度的实验演示。相反,这些系统的光学响应在机械相互作用的存在下也会发生变化,导致电磁感应透明(EIT)和参量正常模式分裂等效应。在原子系统中,对慢光和停止光(适用于现代光网络和未来的量子网络)的研究在过去二十年中推动了 EIT 成为实验研究的前沿。在这里,我们通过工程光子-声子相互作用来控制光的速度,在纳米级光机械晶体中演示了 EIT 和可调谐的光延迟。我们的设备是通过在薄膜硅中刻蚀孔来制造的。在低温(8.7 开尔文)下,我们报告了具有近 100%光学透明度的 50 纳秒可调延迟,以及具有 1.4 微秒信号提前的超光速光。这些结果虽然表明在集成量子光机械存储器方面取得了重大进展,但也与经典信号处理应用相关。在类似的电磁感应吸收的室温测量中,这些芯片级光机械系统对于微波光信号的光学缓冲、放大和滤波具有实用价值。