Suppr超能文献

强耦合 regime 下的电路腔机电学。

Circuit cavity electromechanics in the strong-coupling regime.

机构信息

National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.

出版信息

Nature. 2011 Mar 10;471(7337):204-8. doi: 10.1038/nature09898.

Abstract

Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence. Central to this effort is the necessity of long-lived mechanical states. Previous efforts have witnessed quantum behaviour, but for a low-quality-factor mechanical system. The field of cavity optomechanics and electromechanics, in which a high-quality-factor mechanical oscillator is parametrically coupled to an electromagnetic cavity resonance, provides a practical architecture for cooling, manipulation and detection of motion at the quantum level. One requirement is strong coupling, in which the interaction between the two systems is faster than the dissipation of energy from either system. Here, by incorporating a free-standing, flexible aluminium membrane into a lumped-element superconducting resonant cavity, we have increased the single-photon coupling strength between these two systems by more than two orders of magnitude, compared to previously obtained coupling strengths. A parametric drive tone at the difference frequency between the mechanical oscillator and the cavity resonance dramatically increases the overall coupling strength, allowing us to completely enter the quantum-enabled, strong-coupling regime. This is evidenced by a maximum normal-mode splitting of nearly six bare cavity linewidths. Spectroscopic measurements of these 'dressed states' are in excellent quantitative agreement with recent theoretical predictions. The basic circuit architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of long-lived quantum states of mechanical motion.

摘要

展示和利用宏观机械物体的量子性质将有助于我们直接研究基于量子的测量和量子信息协议的局限性,以及测试关于宏观量子相干性的长期存在的问题。实现这一目标的核心是需要具有长寿命的机械状态。以前的努力已经观察到了量子行为,但对于低品质因数的机械系统来说。腔光机械学和机电学领域为在量子水平上冷却、操纵和检测运动提供了一种实用的架构,其中高品质因数的机械振荡器与电磁腔共振进行参数耦合。一个要求是强耦合,其中两个系统之间的相互作用比任何一个系统的能量耗散都要快。在这里,我们通过将一个独立的、灵活的铝膜纳入集总元件超导共振腔中,将这两个系统之间的单光子耦合强度提高了两个数量级以上,与之前获得的耦合强度相比。机械振荡器和腔共振之间的差频的参数驱动音极大地增加了整体耦合强度,使我们能够完全进入量子增强的强耦合状态。这一点可以通过近六个空腔线宽的最大正常模式分裂来证明。对这些“修饰态”的光谱测量与最近的理论预测非常吻合。这里提出的基本电路架构为机械运动的基态冷却以及随后的相干控制和长寿命量子态测量提供了一条可行的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验