Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA.
Phys Biol. 2011 Apr;8(2):024001. doi: 10.1088/1478-3975/8/2/024001. Epub 2011 Mar 21.
By analyzing 30 min, high-resolution recordings of single Escherichia coli flagellar motors in the physiological regime, we show that two main properties of motor switching-the mean clockwise and mean counter-clockwise interval durations-vary significantly. When we represent these quantities on a two-dimensional plot for several cells, the data do not fall on a one-dimensional curve, as expected with a single control parameter, but instead spread in two dimensions, pointing to motor individuality. The largest variations are in the mean counter-clockwise interval, and are attributable to variations in the concentration of the internal signaling molecule CheY-P. In contrast, variations in the mean clockwise interval are interpreted in terms of motor individuality. We argue that the sensitivity of the mean counter-clockwise interval to fluctuations in CheY-P is consistent with an optimal strategy of run and tumble. The concomittent variability in mean run length may allow populations of cells to better survive in rapidly changing environments by 'hedging their bets'.
通过分析 30 分钟、高分辨率的单个大肠杆菌鞭毛马达在生理状态下的记录,我们表明,马达开关的两个主要特性——平均顺时针和平均逆时针间隔持续时间——有显著变化。当我们将这些数量在二维图上表示为几个细胞时,数据不会落在预期的单一控制参数的一维曲线上,而是在二维空间中扩散,指向马达的个体性。最大的变化发生在平均逆时针间隔上,这归因于内部信号分子 CheY-P 的浓度变化。相比之下,平均顺时针间隔的变化则根据马达的个体性来解释。我们认为,平均逆时针间隔对 CheY-P 波动的敏感性与跑与转的最优策略是一致的。平均跑动长度的同时变化可能允许细胞群体通过“对冲赌注”更好地在快速变化的环境中生存。