Technische Universität Darmstadt, Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Petersenstraβe 23, D-64287, Darmstadt, Germany.
Nanoscale. 2011 Apr;3(4):1894-903. doi: 10.1039/c1nr00003a. Epub 2011 Mar 18.
We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzyme horseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymer membranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic transport, and this blocking effect can be exploited to tune the conductance and selectivity of the nanopore in aqueous solution. Both cylindrical and conical nanopores were used in the experiments. The possibility of obtaining two or more conductance states (output), dictated by the degree of nanopore blocking resulted from the different biomolecules in solution (input), as well as the current rectification properties obtained with the conical nanopore, could also allow implementing information processing at the nanometre scale. Model simulations based on the transport equations further verify the feasibility of the sensing procedure that involves concepts from supramolecular chemistry, molecular imprinting, recognition, and nanotechnology.
我们展示了在重离子跟踪聚合物膜中制造的单个纳米孔内,伴刀豆球蛋白 A (Con A) 蛋白与糖基酶辣根过氧化物酶 (HRP) 的超分子生物缀合。首先,使用碳二亚胺偶联化学将 HRP 酶共价固定在孔的内壁上。固定化的 HRP 酶分子带有可供 Con A 蛋白结合的糖(甘露糖)基团。其次,通过 Con A 与 HRP 酶上的甘露糖残基的生物特异性相互作用,在孔壁上实现了 Con A 的生物缀合。生物分子在纳米孔内的固定导致可用于离子传输的有效面积减少,并且这种阻塞效应可用于调节纳米孔在水溶液中的电导率和选择性。在实验中使用了圆柱形和圆锥形纳米孔。由于溶液中不同的生物分子导致纳米孔的阻塞程度不同,因此有可能获得两个或更多的电导状态(输出),以及使用圆锥形纳米孔获得的电流整流特性,这也允许在纳米尺度上实现信息处理。基于传输方程的模型模拟进一步验证了涉及超分子化学、分子印迹、识别和纳米技术概念的传感过程的可行性。