Suppr超能文献

高度自动化偶极子估计(HADES)。

Highly Automated Dipole EStimation (HADES).

机构信息

Dipartimento di Matematica, Università di Genova, Genova, Italy.

出版信息

Comput Intell Neurosci. 2011;2011:982185. doi: 10.1155/2011/982185. Epub 2011 Mar 6.

Abstract

Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset.

摘要

从生物磁数据中自动估计电流偶极子仍然是一个有问题的任务。这不仅是由于逆问题的不适定性,还因为偶极子模型引入了两个内在的困难:源的未知数量和源位置与数据之间的非线性关系。最近,我们基于偶极子的动态跟踪,开发了一种新的基于贝叶斯的粒子滤波方法。与许多基于偶极子的方法不同,粒子滤波不假设源配置的稳定性:在 MEG 序列的过程中,偶极子的数量及其位置是估计和更新的。我们现在已经开发了一个基于 Matlab 的图形用户界面,允许非专家用户使用粒子滤波从 MEG 数据中进行自动偶极子估计。在本文中,我们描述了软件的主要特点,并展示了对合成数据集和实验数据集的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f93b/3061326/ccf7c0ed5fe6/CIN2011-982185.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验