Belamkar Vikas, Selvaraj Michael Gomez, Ayers Jamie L, Payton Paxton R, Puppala Naveen, Burow Mark D
Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA.
Genetica. 2011 Apr;139(4):411-29. doi: 10.1007/s10709-011-9556-2. Epub 2011 Mar 27.
Knowledge of genetic diversity, population structure, and degree of linkage disequilibrium (LD) in target association mapping populations is of great importance and is a prerequisite for LD-based mapping. In the present study, 96 genotypes comprising 92 accessions of the US peanut minicore collection, a component line of the tetraploid variety Florunner, diploid progenitors A. duranensis (AA) and A. ipaënsis (BB), and synthetic amphidiploid accession TxAG-6 were investigated with 392 simple sequence repeat (SSR) marker bands amplified using 32 highly-polymorphic SSR primer pairs. Both distance- and model-based (Bayesian) cluster analysis revealed the presence of structured diversity. In general, the wild-species accessions and the synthetic amphidiploid grouped separately from most minicore accessions except for COC155, and were eliminated from most subsequent analyses. UPGMA analysis divided the population into four subgroups, two major subgroups representing subspecies fastigiata and hypogaea, a third group containing individuals from each subspecies or possibly of mixed ancestry, and a fourth group, either consisting of COC155 alone if wild species were excluded, or of COC155, the diploid species, and the synthetic amphidiploid. Model-based clustering identified four subgroups- one each for fastigiata and hypogaea subspecies, a third consisting of individuals of both subspecies or of mixed ancestry predominantly from Africa or Asia, and a fourth group, consisting of individuals predominantly of var fastigiata, peruviana, and aequatoriana accessions from South America, including COC155. Analysis of molecular variance (AMOVA) revealed statistically-significant (P < 0.0001) genetic variance of 16.87% among subgroups. A total of 4.85% of SSR marker pairs revealed significant LD (at r(2) ≥ 0.1). Of the syntenic marker pairs separated by distances < 10 cM, 11-20 cM, 21-50 cM, and > 50 cM, 19.33, 5.19, 6.25 and 5.29% of marker pairs were found in strong LD (P ≤ 0.01), in accord with LD extending to great distances in self pollinated crops. A threshold value of r(2) > 0.035 was found to distinguish mean r(2) values of linkage distance groups statistically from the mean r(2) values of unlinked markers; LD was found to extend to 10 cM over the entire minicore collection by this criterion. However, there were large differences in r(2) values among marker pairs even among tightly-linked markers. The implications of these findings with regard to the possibility of using association mapping for detection of genome-wide SSR marker-phenotype association are discussed.
了解目标关联作图群体中的遗传多样性、群体结构和连锁不平衡(LD)程度非常重要,是基于LD作图的前提条件。在本研究中,使用32对高度多态性简单序列重复(SSR)引物对扩增出392个SSR标记条带,对96个基因型进行了研究,这些基因型包括92份美国花生微型核心种质、四倍体品种佛罗里unner的一个组分系、二倍体祖先A. duranensis(AA)和A. ipaënsis(BB)以及人工合成的双二倍体种质TxAG-6。基于距离和模型(贝叶斯)的聚类分析均揭示了结构多样性的存在。总体而言,除了COC155外,野生种质和人工合成双二倍体与大多数微型核心种质分开聚类,并在大多数后续分析中被排除。UPGMA分析将群体分为四个亚组,两个主要亚组分别代表亚种fastigiata和hypogaea,第三个亚组包含来自每个亚种或可能具有混合血统的个体,第四个亚组,如果排除野生种质,则仅由COC155组成,或者由COC155、二倍体物种和人工合成双二倍体组成。基于模型的聚类确定了四个亚组——一个对应fastigiata亚种,一个对应hypogaea亚种,第三个亚组由两个亚种或主要来自非洲或亚洲的混合血统个体组成,第四个亚组主要由来自南美洲的var fastigiata、peruviana和aequatoriana种质个体组成,包括COC155。分子方差分析(AMOVA)显示亚组间存在统计学上显著(P < 0.0001)的遗传方差,为16.87%。共有4.85%的SSR标记对显示出显著的LD(r(2)≥0.1)。在距离<10 cM、11 - 20 cM、21 - 50 cM和>50 cM的同线标记对中,分别有19.33%、5.19%、6.25%和5.29%的标记对处于强LD状态(P≤0.01),这与自花授粉作物中LD延伸到很远距离一致。发现r(2)>0.035的阈值可在统计学上区分连锁距离组的平均r(2)值与非连锁标记的平均r(2)值;据此标准,LD在整个微型核心种质中延伸至10 cM。然而,即使在紧密连锁的标记对之间,r(2)值也存在很大差异。讨论了这些发现对于利用关联作图检测全基因组SSR标记 - 表型关联可能性的意义。