Bobb Jennifer F, Dominici Francesca, Peng Roger D
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
Biometrics. 2011 Dec;67(4):1605-16. doi: 10.1111/j.1541-0420.2011.01583.x. Epub 2011 Mar 29.
Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this article, we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987-2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat-wave risk estimation is sensitive to model choice. Although model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models.
估算热浪对人类健康构成的风险是评估气候变化未来影响的关键部分。在本文中,我们提出了一类灵活的时间序列模型,以估算与热浪相关的死亡相对风险,并进行贝叶斯模型平均(BMA)以考虑潜在模型的多样性。将这些方法应用于1987 - 2005年期间美国105个城市的数据,我们确定了那些在热浪期间死亡风险增加的后验概率较高的城市,研究了各城市死亡风险后验分布的异质性,评估了结果对先验分布选择的敏感性,并将我们的BMA结果与一种模型选择方法进行了比较。我们的结果表明,没有一个单一模型能在大多数城市中最佳地预测风险,并且对于一些城市,热浪风险估计对模型选择很敏感。尽管与基于通过模型选择获得的模型的统计推断相比,模型平均导致后验分布的方差增加,但我们发现热浪死亡风险的后验均值在考虑广泛模型类别的模型不确定性时是稳健的。