Suppr超能文献

空气污染与死亡率时间序列研究中的贝叶斯模型平均法

Bayesian model averaging in time-series studies of air pollution and mortality.

作者信息

Thomas Duncan C, Jerrett Michael, Kuenzli Nino, Louis Thomas A, Dominici Francesca, Zeger Scott, Schwarz Joel, Burnett Richard T, Krewski Daniel, Bates David

机构信息

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9011, USA.

出版信息

J Toxicol Environ Health A. 2007 Feb 1;70(3-4):311-5. doi: 10.1080/15287390600884941.

Abstract

The issue of model selection in time-series studies assessing the acute health effects from short-term exposure to ambient air pollutants has received increased scrutiny in the past 5 yr. Recently, Bayesian model averaging (BMA) has been applied to allow for uncertainty about model form in assessing the association between mortality and ambient air pollution. While BMA has the potential to allow for such uncertainties in risk estimates, Bayesian approaches in general and BMA in particular are not panaceas for model selection., Since misapplication of Bayesian methods can lead to erroneous conclusions, model selection should be informed by substantive knowledge about the environmental health processes influencing the outcome. This paper examines recent attempts to use BMA in air pollution studies to illustrate the potential benefits and limitations of the method.

摘要

在过去5年中,评估短期暴露于环境空气污染物对健康的急性影响的时间序列研究中的模型选择问题受到了越来越多的审视。最近,贝叶斯模型平均法(BMA)已被应用于在评估死亡率与环境空气污染之间的关联时考虑模型形式的不确定性。虽然BMA有可能在风险估计中考虑此类不确定性,但一般的贝叶斯方法,特别是BMA并非模型选择的万灵药。由于贝叶斯方法的错误应用可能导致错误结论,模型选择应基于对影响结果的环境卫生过程的实质性知识。本文考察了最近在空气污染研究中使用BMA的尝试,以说明该方法的潜在益处和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验