Suppr超能文献

哪些天气变量对预测与热相关的死亡率很重要?统计学习方法的新应用。

What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods.

机构信息

Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA.

Department of Statistics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Environ Res. 2014 Jul;132:350-9. doi: 10.1016/j.envres.2014.04.004. Epub 2014 May 14.

Abstract

Hot weather increases risk of mortality. Previous studies used different sets of weather variables to characterize heat stress, resulting in variation in heat-mortality associations depending on the metric used. We employed a statistical learning method - random forests - to examine which of the various weather variables had the greatest impact on heat-related mortality. We compiled a summertime daily weather and mortality counts dataset from four U.S. cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. A variety of weather variables were ranked in predicting deviation from typical daily all-cause and cause-specific death counts. Ranks of weather variables varied with city and health outcome. Apparent temperature appeared to be the most important predictor of heat-related mortality for all-cause mortality. Absolute humidity was, on average, most frequently selected as one of the top variables for all-cause mortality and seven cause-specific mortality categories. Our analysis affirms that apparent temperature is a reasonable variable for activating heat alerts and warnings, which are commonly based on predictions of total mortality in next few days. Additionally, absolute humidity should be included in future heat-health studies. Finally, random forests can be used to guide the choice of weather variables in heat epidemiology studies.

摘要

高温天气增加死亡率。以往的研究使用不同的气象变量集来描述热应激,因此使用的指标不同,热致死关联也不同。我们采用了一种统计学习方法——随机森林,来研究各种气象变量中哪些对与热相关的死亡率有最大影响。我们从 1998 年至 2006 年,从美国四个城市(伊利诺伊州芝加哥、密歇根州底特律、宾夕法尼亚州费城和亚利桑那州凤凰城)收集了一个夏季每日天气和死亡率数据。对各种气象变量进行了排名,以预测与典型每日全因和特定原因死亡人数的偏差。气象变量的排名随城市和健康结果而变化。体感温度似乎是全因死亡率的最重要的热相关死亡预测指标。平均而言,绝对湿度是全因死亡率和七个特定原因死亡率类别中最常被选为前几个变量之一。我们的分析证实,体感温度是激活热警报和警告的合理变量,这些警报和警告通常基于未来几天总死亡率的预测。此外,绝对湿度应包含在未来的热健康研究中。最后,随机森林可用于指导热流行病学研究中气象变量的选择。

相似文献

6
Heat waves in South Korea: differences of heat wave characteristics by thermal indices.韩国热浪:不同热指数下热浪特征的差异。
J Expo Sci Environ Epidemiol. 2019 Oct;29(6):790-805. doi: 10.1038/s41370-018-0076-3. Epub 2018 Oct 3.

引用本文的文献

本文引用的文献

4
What measure of temperature is the best predictor of mortality?哪种体温测量指标是预测死亡率的最佳指标?
Environ Res. 2010 Aug;110(6):604-11. doi: 10.1016/j.envres.2010.05.006. Epub 2010 Jun 1.
7
Absolute humidity modulates influenza survival, transmission, and seasonality.绝对湿度调节流感病毒的存活、传播及季节性。
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8. doi: 10.1073/pnas.0806852106. Epub 2009 Feb 9.
8
Temperature and mortality in nine US cities.美国九个城市的温度与死亡率
Epidemiology. 2008 Jul;19(4):563-70. doi: 10.1097/EDE.0b013e31816d652d.
9
Heat stress and public health: a critical review.热应激与公众健康:一项批判性综述。
Annu Rev Public Health. 2008;29:41-55. doi: 10.1146/annurev.publhealth.29.020907.090843.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验