Suppr超能文献

α-壳聚糖结构的纳米尺度研究及其非晶热力学。

Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale.

机构信息

National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80202, United States.

出版信息

J Phys Chem B. 2011 Apr 21;115(15):4516-22. doi: 10.1021/jp200912q. Epub 2011 Mar 31.

Abstract

Chitin is the primary structural material of insect and crustacean exoskeletons and fungal and algal cell walls, and as such it is the one of the most abundant biological materials on Earth. Chitin forms linear polymers of β1,4-linked-N-acetyl-D-glucosamine (GlcNAc), and in Nature, enzyme cocktails deconstruct chitin to GlcNAc. The mechanism of chitin deconstruction, like that of cellulose deconstruction, has been under investigation due to its importance in the global carbon cycle and in production of renewable and sustainable products from biological matter. To further understand the nanoscale properties of chitin, here we simulate crystals of α-chitin, which is the most prevalent form in Nature. We find excellent agreement with the recently reported crystal structure and we report the salient features of the simulations related to crystalline stability. We also compute the thermodynamic work required to peel individual chains from α-chitin surfaces, which a chitinase enzyme must conduct to deconstruct chitin. Compared with previous simulations of native plant cellulose Iβ, α-chitin exhibits higher decrystallization work for chains in the middle of surfaces and similar work for chains on the edges of crystals. Unlike cellulose, the free energy profile is dominated by a single bifurcated hydrogen bond between chains formed by the GlcNAc side chains and the O6 atoms on the primary alcohol group. This study highlights the molecular features of chitin that make it such a tough, recalcitrant material, and provides a key thermodynamic parameter in our quantitative understanding of how enzymes contribute to the turnover of carbohydrates in the biosphere.

摘要

几丁质是昆虫和甲壳类动物外骨骼以及真菌和藻类细胞壁的主要结构材料,因此它是地球上最丰富的生物材料之一。几丁质形成β1,4-连接的 N-乙酰-D-葡萄糖胺(GlcNAc)的线性聚合物,在自然界中,酶混合物将几丁质解构为 GlcNAc。由于几丁质解构在全球碳循环和从生物物质生产可再生和可持续产品中的重要性,其解构机制与纤维素解构一样受到研究。为了进一步了解几丁质的纳米级性质,我们在这里模拟了α-几丁质晶体,它是自然界中最常见的形式。我们与最近报道的晶体结构非常吻合,并报告了与晶体稳定性相关的模拟的显著特征。我们还计算了从α-几丁质表面剥离单个链所需的热力学功,几丁质酶必须进行这种功来解构几丁质。与天然植物纤维素 Iβ的先前模拟相比,α-几丁质在表面中间的链上表现出更高的去结晶功,而在晶体边缘的链上则表现出相似的功。与纤维素不同,自由能曲线主要由 GlcNAc 侧链和主醇基团上的 O6 原子之间形成的链之间的单个分叉氢键控制。这项研究强调了几丁质的分子特征,使其成为一种坚韧、难以分解的材料,并提供了一个关键的热力学参数,用于我们定量理解酶如何促进生物圈内碳水化合物的周转。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验